首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
PVC-based membranes of meso-tetrakis-{4-[tris-(4-allyl dimethylsilyl-phenyl)-silyl]-phenyl}porphyrin (I) and (sal)2trien (II) as electroactive material with dioctylphthalate (DOP), tri-n-butylphosphate (TBP), chloronapthalene (CN), dibutylphthalate (DBP) and dibutyl(butyl) phosphonate (DBBP) as plasticising solvent mediators have been found to act as Ni2+ selective sensor. The best performance was obtained with the sensor having a membrane of composition of I: sodium tetraphenyl borate: PVC in the ratio 5:5:150. The sensor exhibits Nernstian response in the activity range 2.5 × 10−6 to 1.0 × 10−1 M, performs satisfactorily over wide pH range (2–5.5) with a fast response time (8 s). The sensor was found to work satisfactorily in partially non-aqueous media up to 20% (v/v) content of methanol or ethanol and acetone and could be used over a period of 4 months. Potentiometric selectivity coefficients determined by matched potential method (MPM) indicate excellent selectivity for Ni2+ ions. The sensors could be used successfully in the estimation of nickel in different brand of chocolates and also as an indicator electrode in potentiometric titration.  相似文献   

2.
Hassan SS  Ali MM  Attawiya AM 《Talanta》2001,54(6):1153-1161
Two novel uranyl PVC matrix membrane sensors responsive to uranyl ion are described. The first sensor incorporates tris(2-ethylhexyl)phosphate (TEHP) as both electroactive material and plasticizer and sodium tetraphenylborate (NaTPB) as an ion discriminator. The sensor displays a rapid and linear response for UO22+ ions over the concentration range 1×10−1–2×10−5 mol l−1 UO22+ with a cationic slope of 25.0±0.2 mV decade−1. The working pH range is 2.8–3.6 and the life span is 4 weeks. The second sensor contains O-(1,2-dihydro-2-oxo-1-pyridyl)-N,N,N′,N′-bis(tetra-methylene)uronium hexafluorophosphate (TPTU) as a sensing material, sodium tetraphenylborate as an ion discriminator and dioctyl phenylphosphonate (DOPP) as a plasticizer. Linear and stable response for 1×10−1–5×10−5 mol l−1 UO22+ with near-Nernstian slope of 27.5±0.2 mV decade−1 are obtained. The working pH range is 2.5–3.5 and the life span of the sensor is 6 weeks. Interference from many inorganic cations is negligible for both sensors. However, interference caused by some ions (e.g. Th4+, Cu2+, Fe3+) is eliminated by a prior ion exchange or solvent extraction step. Direct potentiometric determination of as little as 5 μg ml−1 uranium in aqueous solutions shows an average recovery of 97.2±1.3%. Application for the determination of uranium at levels of 0.01–1 wt.% in naturally occurring and certified ores gives results with good correlation with data obtained by X-ray fluorescence.  相似文献   

3.
A new PVC membrane electrode for Zn2+ ions based on tetra(2-aminophenyl) porphyrin (TAPP) as membrane carrier is prepared. The sensor exhibits a linear stable response over a wide concentration range (5.0×10−5 to 1.0×10−1 M) with a slope of 26.5 mV/decade and a limit of detection 3.0×10−5 M (1.96 ppm). It has a response time of about l0 s and can be used for at least 8 months without any divergence in potential. The propose membrane sensor revealed good selectivities for Zn2+ over a wide variety of other metal ions and can be used in pH range of 3.0–6.0. It was successfully applied to the direct determination of zinc in a pharmaceutical sample and also as an indicator electrode in potentiometric titration of Zn2+ ions.  相似文献   

4.
A μ-bis(tridentate) ligand named 2-phenyl-1,3-bis[3′-aza-4′-(2′-hydroxyphenyl)-prop-4-en-1′-yl]-1,3-imidazolidine (I) has been synthesized and scrutinized to develop iron(III)-selective sensors. The addition of sodium tetraphenyl borate and various plasticizers, viz., chloronaphthalene, dioctylphthalate, o-nitrophenyl octyl ether and dibutylphthalate has been used to substantially improve the performance of the sensors. The membranes of various compositions of the ligand were investigated and it was found that the best performance was obtained for the membrane of composition (I) (10 mg):PVC (150 mg):chloronaphthalene (200 mg):sodium tetraphenyl borate (9 mg). The sensor showed a linear potential response to iron(III) over wide concentration range 6.3 × 10−6 to 1.0 × 10−1 M (detection limit 5.0 × 10−6 M) with Nernstian slope (20.0 mV/decade of activity) between pH 3.5 and 5.5 with a quick response time of 15 s. The potentiometric selectivity coefficient values as determined by match potential method (MPM) indicate excellent selectivity for Fe3+ ions over interfering cations. The sensor exhibits adequate life of 2 months with good reproducibility. The sensor could be used in direct potentiometry.  相似文献   

5.
Plasticized poly(vinyl chloride) (PVC) membranes of different compositions were tested for use in the construction of potentiometric flow detectors for triiodide. A membrane with a 2:1 (w/w) 2-nitrophenyl octyl ether to PVC ratio was selected. The influence of thiosulphate in the carrier solution composition and of the flow-injection variables on the determination of triiodide was studied. In the selected conditions, a linear relationship between peak height and log[I3] was obtained between 5 × 10−6 and 1 × 10−4 mol l−1 triiodide. Peak height relative standard deviations for 2 × 10−5 and 1 × 10−4 mol l−1 triiodide were ±0.4 and ±1.8%, respectively, and sampling frequency was 80 samples per hour. The method proposed was applied satisfactorily to the iodometric determination of different chlorine-containing disinfectants, among them trichloroisocyanuric acid and dichloroisocyanurate in several types of commercial sample.  相似文献   

6.
Ohura H  Imato T  Yamasaki S 《Talanta》1999,49(5):1383-1015
A rapid potentiometric flow injection technique for the simultaneous determination of oxychlorine species such as ClO3–ClO2 and ClO3–HClO has been developed, using both a redox electrode detector and a Fe(III)–Fe(II) potential buffer solution containing chloride. The analytical method is based on the detection of a large transient potential change of the redox electrode due to chlorine generated via the reaction of the oxychlorine species with chloride in the potential buffer solution. The sensitivities to HClO and ClO2 obtained by the transient potential change were enhanced 700–800-fold over that using an equilibrium potential. The detection limit of the present method for HClO and ClO2 is as low as 5×10−8 M with use of a 5×10−4 M Fe(III)–1×10−3 M Fe(II) buffer containing 0.3 M KCl and 0.5 M H2SO4. On the other hand, sensitivity to ClO3 was low when a potential buffer solution containing 0.5 M H2SO4 was used, but could be increased largely by increasing the acidity of the potential buffer. The detection limit for ClO3 was 2×10−6 M with the use of a 5×10−4 M Fe(III)–1×10−3 M Fe(II) buffer containing 0.3 M KCl and 9 M H2SO4. By utilizing the difference in reactivity of oxychlorine species with chloride in the potential buffer, a simultaneous determination method for a mixed solution of ClO3–ClO2 or ClO3–HClO was designed to detect, in a timely manner, a transient potential change with the use of two streams of potential buffers which contain different concentrations of sulfuric acid. Analytical concentration ranges of oxychlorine species were 2×10−5–2×10−4 M for ClO3, and 1×10−6–1×10−5 M for HClO and ClO2. The reproducibility of the present method was in the range 1.5–2.3%. The reaction mechanism for the transient potential change used in the present method is also discussed, based on the results of batchwise experiments. The simultaneous determination method was applied to the determination of oxychlorine species in a tap water sample, and was found to provide an analytical result for HClO, which was in good agreement with that obtained by the o-tolidine method and to provide a good recovery for ClO3 added to the sample.  相似文献   

7.
Li Liu  Jun-feng Song  Peng-fei Yu  Bin Cui 《Talanta》2007,71(5):1842-1848
A novel voltammetric method for the determination of β-d-glucose (GO) is proposed based on the reduction of Cu(II) ion in Cu(II)(NH3)42+–GO complex at lanthanum(III) hydroxide nanowires (LNWs) modified carbon paste electrode (LNWs/CPE). In 0.1 mol L−1 NH3·H2O–NH4Cl (pH 9.8) buffer containing 5.0 × 10−5 mol L−1 Cu(II) ion, the sensitive reduction peak of Cu(II)(NH3)42+–GO complex was observed at −0.17 V (versus, SCE), which was mainly ascribed to both the increase of efficient electrode surface and the selective coordination of La(III) in LNW to GO. The increment of peak current obtained by deducting the reduction peak current of the Cu(II) ion from that of the Cu(II)(NH3)42+–GO complex was rectilinear with GO concentration in the range of 8.0 × 10−7 to 2.0 × 10−5 mol L−1, with a detection limit of 3.5 × 10−7 mol L−1. A 500-fold of sucrose and amylam, 100-fold of ascorbic acid, 120-fold of uric acid as well as gluconic acid did not interfere with 1.0 × 10−5 mol L−1 GO determination.  相似文献   

8.
Chi Y  Xie J  Chen G 《Talanta》2006,68(5):1544-1549
The electrochemiluminescent (ECL) response of allopurinol was studied in aqueous media over a wide pH range (pH 2–13) using flow injection (FI) analysis. It was revealed that allopurinol itself had no ECL activity, but could greatly enhance the ECL of Ru(bpy)32+ in alkaline media giving rise to a sensitive FI-ECL response. The effects of experimental conditions including the mode of applied voltage signal, the potential of working electrode, pH value, the flow rate of carrier solution, and the concentration of Ru(bpy)32+ and allopurinol on the ECL intensity were investigated in detail. The most sensitive FI-ECL response of allopurinol was found at pH 12.0, where the FIA-ECL intensity showed a linear relationship with concentration of allopurinol in the range 1 × 10−8 mol L−1 to 5 × 10−7 mol L−1, and the detection limit was 5 × 10−9 mol L−1.  相似文献   

9.
Two types of Co(III) tetraphenylporphyrins, Co(III)TPPX (I) and Co(III)(N)TPPX (II), where X = C1 or NO2 and N = C5H5N or C6H5CH2C5H4N, are used as ionophores to prepare nitrite responsive polymeric membrane electrodes. The influence of the initial axial ligand (X and N) on the operative ionophore mechanism of these metalloporphyrins within the solvent polymeric membranes is examined. Results from potentiometric and electrodialysis experiments suggest that in the presence of nitrite in the test sample and internal solution, both types of Co (III) porphyrins studied (I and II) act as neutral carriers and that the addition of lipophilic cationic sites (e.g., tridodecylmethylammonium ions (TDMA+)) to the organic membrane is essential to improve the selectivity and long term stability of sensors prepared with these species. Membranes formulated with (I) or (II) in the nitrite form along with TDMACl in plasticized PVC films exhibit the following selectivity sequence: SCN > NO2 ˜ C1O4 > Sal > NO3 > Br > C1. Membrane electrodes with added lipophilic cationic sites are shown to exhibit rapid, fully reversible and Nernstian response towards nitrite ions in the concentration range of 10−1–10−5 M, with good long term stability.  相似文献   

10.
van Staden JF  Stefan RI 《Talanta》1999,49(5):1472-1022
An on-line automated system for the simultaneous flow injection determination of calcium and fluoride in natural and borehole water with conventional calcium-selective and fluoride-selective membrane electrodes as sensors in series is described. Samples (30 μl) are injected into a TISAB II (pH=5.50) carrier solution as an ionic strength adjustment buffer. The sample-buffer zone formed is first channeled to a fluoride-selective membrane electrode and then via the calcium-selective membrane electrode to the reference electrodes. The system is suitable for the simultaneous on-site monitoring of calcium (linear range 10−5–10−2 mol l−1 detection limit 1.94×10−6 mol l−1 recovery 99.22%, RSD<0.5%) and fluoride (linear range 10−5–10−2 mol l−1 detection limit 4.83×10−6 mol l−1 recovery 98.63%, RSD=0.3%) at a sampling rate of 60 samples h−1.  相似文献   

11.
The construction and electrochemical response characteristics of poly (vinyl chloride) and poly (vinyl chloride) carboxylate membrane sensors for the determination of cyclophosphamide and ifosphamide are described. Based on the formation of an ion-pair complex between the drug cation and sodium tetraphenylborate, two poly (vinyl chloride) sensors, namely a cyclophosphamide membrane sensor and ifosphamide membrane sensor were fabricated. They show a linear response for both drugs over the concentration range 10−2–10−4 M with cationic slopes of 56 and 54.6 mV per concentration decade, for sensor 1 and sensor 2, respectively. Based on the interaction between the drug solution and the dissociated COOH groups in the poly (vinyl chloride) carboxylate, sensor 3 was fabricated. It shows a linear response for both drugs over the concentration range 10−3–10−5 M with a cationic slope of 49.7 mV per concentration decade. The direct potentiometric determination of cyclophosphamide and ifosphamide in their pharmaceutical preparations using the proposed sensors gave average recoveries of 101.3±0.6, 100.8±10.7 and 102.0±11.0% for the sensors 1, 2 and 3, respectively, which compares reasonably well with the data obtained using the British Pharmacopoeial method (1993). Sensors 1 and 2 were also used to follow up the stability of the drugs studied in the presence of their degradates. These degradation products have no diverse effect on the responses of sensors 1 and 2.  相似文献   

12.
A PVC membrane electrode based on bis-2-thiophenal propanediamine (TPDA) coated directly on graphite is described. The electrode exhibits a Nernstian response for Cu2+ over a very wide concentration range (1.0×10−1 to 6.0×10−8 M) with a detection limit of 3.0×10−8 M (2.56 ng ml−1). It has a fast response time and can be used for at least 2 months without any major deviation. The proposed sensor revealed very good selectivities for Cu2+ over a wide variety of other metal ions and could be used in the pH range of 3.0–7.0. It was successfully used for direct determination of copper in black tea and as an indicator electrode in potentiometric titration of copper ion.  相似文献   

13.
Zhou CL  Lu Y  Li XL  Luo CN  Zhang ZW  You JM 《Talanta》1998,46(6):1531-1536
A new method is described for the determination of antimony based on the cathodic adsorptive stripping of Sb(III) complexed with 2′,3,4′,5,7-pentahydroxyflavone(morin) at a static mercury drop electrode (SMDE). The reduction current of the adsorbed antimony complex was measured by 1.5th-order derivative linear-sweep adsorption voltammetry. The peak potential is at −0.51 V (vs. SCE). The effects of various parameters on the response are discussed. The optimized analytical conditions were found to be: supporting electrolyte, chloroacetic acid (0.04 mol/l, pH 2.3); concentration of morin, 5×10−6 mol/l; accumulation potential, −0.25 V (vs. SCE); scan rate, 100 mV/s. The limit of detection and the linear range were 7×10−10 mol/l and 1.0×10−93.0×10−7 mol/l Sb(III) for a 2-min accumulation time, respectively. This method has been applied to the determination of Sb(III) in steel and brass samples and satisfactory results were obtained. The adsorptive voltammetric characteristics and composition of the Sb(III)–morin complex were studied.  相似文献   

14.
Li CY  Zhang XB  Jin Z  Han R  Shen GL  Yu RQ 《Analytica chimica acta》2006,580(2):143-148
An amide-linked 2,6-bis{[(2-hydroxy-5-tert-butylbenzyl)(pyridyl-2-methyl)-amino]-methyl}-4-methylphenol-ruthenium(II) tris(bipyridine) 2PF6 complex, 1, was first used to recognize Co(II) in EtOH/H2O (1:1, v/v) solution, with the ruthenium(II) tris(bipyridine) moiety selected as a fluorophore and the multi-substituted phenol unit chosen as a receptor. The fluorescence quenching of 1 was attributed to the formation of an inclusion complex between multi-substituted phenol unit and Co(II) by 1:1 complex ratio (K = 2.5 × 105), which has been utilized as the basis of the fabrication of the Co(II)-sensitive fluorescent chemosensor. The analytical performance characteristics of the proposed Co(II)-sensitive chemosensor were investigated. The sensor can be applied to the quantification of Co(II) with a linear range covering from 1.0 × 10−7 to 5.0 × 10−5 M and a detection limit of 5 × 10−8 M. The experiment results show that the response behavior of 1 to Co(II) is pH-independent in medium condition (pH 4.5–9.5) and show excellent selectivity for Co(II) over transition metal cations except Cu(II). The chemosensor has been used for determination of Co(II) in water samples.  相似文献   

15.
A PVC membrane electrode for lead ions based on 5,5′-dithiobis-(2-nitrobenzoic acid) as membrane carrier was prepared. The electrode exhibits a Nernstian response for Pb2+ over a wide concentration range (1.0×10−2–4.0×10−6 M). It has a relatively fast response time and can be used for at least 3 months without any divergence in potentials. The proposed electrode revealed good selectivities for Pb2+ over a wide variety of other metal ions and could be used in a pH range of 2.0–7.0. It was used as an indicator electrode in potentiometric titration of lead ions and in direct determination of lead in water samples.  相似文献   

16.
Wu X  Huang F  Duan J  Chen G 《Talanta》2005,65(5):1279-1285
Melatonin and some of its important derivatives were found to be able to enhance the ECL of Ru(bpy)32+ in an alkaline Britton–Robinson buffer solution. The optimum conditions for the enhanced ECL, such as the selection of applied potential mode, type of buffer solution, pH effect and effect of Ru(bpy)32+ concentration have been investigated in detail in this paper. Under the optimum conditions, the enhanced ECL is linear with the concentration of melatonin and its derivatives over the wide range, and the detection limit for these compounds was found to be in the range of 5.0 × 10−8 to 1.0 × 10−10 mol L−1. The proposed procedure was applied for the determination of drug in tablets with recoveries of 85–93%. A possible mechanism for the enhanced ECL of Ru(bpy)32+ by melatonin and its derivatives was proposed, and the relationship between molecular structure of melatonin and its derivatives and the enhanced ECL behavior was also discussed.  相似文献   

17.
Phosphate selective electrodes have been produced based upon rubbery membranes containing heterocylic macrocycles as sensors covalently bound to a cross-linked polystyrene-block–polybutadiene-blockpolystyrene (SBS) polymer. The membranes were robust and the best HPO42−-selective membrane fabricated was composed of 7.1% (m/m) dicumyl peroxide, 28.3% (m/m) 2-nitrophenyloctylether, 9.8% (m/m) 3-(10-undecenyl)-1,5,8-triazacyclodecane-2,4-dione, 31.0% (m/m) SBS and 23.8% (m/m) PoleStar™ 200R (clay-based filler). The characteristics of this electrode were a linear Nernstian range of 3.9×10−3 to 1×10−6 mol dm−3 HPO42− with a limit of detection of 1.0×10−6 mol dm−3 HPO42−, a slope of −29.7±0.9 mV per activity decade and a pH range from 6 to 8. Selectivity coefficients for phosphate against various interfering anions (chloride, sulfate and nitrate) were determined. Response times were 2 min or under, stability of response and electrode lifetime in continuous use were also very satisfactory. The response behavior of HPO42−-ISEs based upon mobile and bound ionophores was comparable and suggests that mobility of the ionophore is not necessary to obtain a working ISE and that covalent binding of ionophores can be used to produce ISEs of increased stability and robustness.  相似文献   

18.
Li B  Zhang Z  Liu W 《Talanta》2001,55(6):1097-1102
A novel chemiluminescence (CL) flow system for the determination of chlortetracycline is described. It is based on the direct CL reaction of chlortetracycline and [Cu(HIO6)2]5− in KOH medium. The unstable [Cu(HIO6)2]5− was on-line electrogenerated by constant-current electrolysis. The CL intensity was linear with chlortetracycline concentration in the range of 0.1–100 μg ml−1. The determination limit was 5.3×10−8 g ml−1. The whole process could be completed in 1 min. The proposed method is suitable for automatic and continuous analysis, and has been applied satisfactorily to analysis of chlortetracycline in biological fluid.  相似文献   

19.
Boutakhrit K  Yang ZP  Kauffmann JM 《Talanta》1995,42(12):1883-1890
A highly selective, rapid and direct amperometric method, based on the formation of a complex between tin(II) and 8-hydroxyquinoline (oxine), has been developed for the determination of trace levels of tin(II) using flow injection analysis. Tin(II) electro-oxidation was catalyzed by oxine; its oxidation peak occurred at +0.05 V vs. Ag/AgCl at a glassy carbon electrode in 0.1 mol 1−1 acetate buffer (pH 6). A linear relationship was obtained between the peak current and the tin(II) concentration in the range 0.25-20 μmol 1−1. The detection limit was 0.1 μmol 1−1 and the relative standard deviation calculated by the injection of a 10 μmol 1−1 tin(II) solution was 5% (n = 20). Optimization of several experimental parameters has been carried out and the influence of numerous cations and possible interfering molecules encountered in radiopharmaceuticals and in dental gels has been investigated. The method was applied to the determination of tin(II) in dental gels.  相似文献   

20.
Jain AK  Gupta VK  Singh LP  Raisoni JR 《Talanta》2005,66(5):1355-1361
Acetylacetone, ethylacetoacetate and salicyldehyde, are reported to form chelates with copper of high stability as compared to other metals. Therefore, PVC based membranes of bis[acetylacetonato] Cu(II) (A), bis[ethylacetoacetate] Cu(II) (B) and bis[salicyldehyde] Cu(II) (C) have been investigated as copper(II) selective sensors. The addition of sodium tetraphenylborate and various plasticizers, viz., DOS, TEHP, DOP, DBP and TBP have been found to substantially improve the performance of the sensors. The membranes of various compositions of the three chelates were investigated and it was found that the best performance was obtained for the membrane of composition A (1%): PVC (33%): TBP (65%): NaTPB (1%). The sensor shows a linear potential response to Cu(II) over wide concentration range 2.0 × 10−6 to 1.0 × 10−1 M (detection limit 0.1 ppm) with Nernstian compliance (29.3 mV decade−1 of activity) between pH 2.6 and 6.0 with a fast response time of 9 s. The potentiometric selectivity coefficient values as determined by match potential method (MPM) indicate excellent selectivity for Cu2+ ions over interfering cations. The sensor exhibits adequate shelf life (3 months) with good reproducibility (S.D. ±0.2 mV). The sensor has been used in the potentiometric titration of Cu2+ with EDTA. The utility of the sensor has been tested by determining copper in vegetable foliar and multivitamin capsule successfully.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号