首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
微包覆钴贮氢合金电极电化学性能的研究   总被引:8,自引:0,他引:8  
以化学镀钴方法微包覆处理贮氢合金,用交流阻抗、循环伏安以及模拟电池充放电实验研究了该贮氢合金电极的电化学性能.结果表明,贮氢合金经包覆钴后,即可减小电极表面的电化学反应阻抗,提高其催化活性,并降低充放电过程的极化,从而增大了电极的放电容量和充电效率.相关的电极过程为扩散控制.  相似文献   

2.
铜在储氢合金表面包铜电极中的行为   总被引:4,自引:0,他引:4  
张大为  袁华堂 《电化学》1997,3(3):263-270
在密封的电池体系中,包铜储氢合金电极具有较好的抗氧化能国和;而在强碱性溶淤 中,铜在电极工作的电位范围内具有一定的稳定性,但当扩展扫描范围,将出现铜的氧化不这原反应。  相似文献   

3.
AB2型储氢合金因其具有理论储氢容量高、循环寿命长以及性价比高等优点引起研究者的广泛研究兴趣。但是,AB2型储氢合金还存在活化困难、易毒化以及平台高等缺点阻碍了其实际应用。近年,针对AB2型合金的缺点,研究者们进行了大量的改性研究,并取得了很大进展。本文综述了AB2型储氢合金近30年以来的研究进展情况,重点介绍了改善其储氢性能的方法,提出了AB2型合金今后的重点研究方向。  相似文献   

4.
新型镁基储氢合金的合成及电化学性能的研究   总被引:16,自引:1,他引:16  
用扩散法成功地合成了Mg1.5Al0.5-xNiVx(x=0,0.1,0.2,0.3,0.4)系列合金。XRD结构分析表明,合金中出现一个新的物相,其化学式为Mg3AlNi2,属立方晶系,Fd3m空间群,新相具有很好的电化学性能。钒的添加使合金的容量进一步提高。未经任何预处理的Mg1.5Al0.3V0.2Ni合金的最大放电容量达到333mA·h·g-1(50mA·g-1,-0.5Vvs.Hg/HgO).Al对六方晶系Mg2Ni合金结构中Mg的部分取代对于延长合金的循环寿命有重要作用。  相似文献   

5.
Mg50Ni50非晶合金具有较高的初始放电容量(500mAh/g),有希望成为Ni-MH二次电池的负极合金材料。但较差的循环稳定性限制了它的进一步开发和应用。为此,本研究采用机械合金化方法,基于Mg侧进行元素替代,获得了四元Mg0.9-xTi0.1PdxNi(X=0.04-0.1)储氢合金。XRD和TEM分别从宏观和微观角度证实该系列合金仍为非晶态合金。本研究还发现,随着Pd含量的增加,腐蚀电流降低;合金的抗腐蚀能力提高。当Pd含量达到0.1的时候,Mg0.8Ti0.1Pd0.1Ni合金的耐蚀能力达到最大,其容量保持率也达到最高,经80次循环后放电容量仍然保持在200mAh/g以上。 AB3型La-Mg-Ni储氢合金与Mg基合金类似之处在于:具有较高的初始放电容量但循环容量保持率较低。为此,本研究将AB3型La0.7Mg0.3Ni3.5合金与具有较高循环稳定性的AB2型Ti0.17Zr0.08V0.35Cr0.1Ni0.3合金相复合,获得新型AB3-AB2复相合金。XRD研究表明复合物中La0.7Mg0.3Ni3.5和Ti0.17Zr0.08V0.35Cr0.1Ni0.3仍旧保持原有结构。扫描电镜(SEM)研究发现,复合物颗粒的平均尺寸在50μm左右。由于Ti0.17Zr0.08V0.35Cr0.1Ni0.3相的防护,复合物的耐腐蚀能力及100次循环容量保持率(62.3%)得以显著提高。  相似文献   

6.
纳米氧化铜掺杂对储氢合金电极性能的影响   总被引:5,自引:0,他引:5  
采用纳米氧化铜作为添加剂制备储氢合金电极, 考察了氧化铜对储氢合金电池储备容量的调节作用, 分析了掺杂后电极及电池质量的变化, 研究了掺杂合金电极的电化学性能, 并用SEM、EIS、CV等方法分析了反应的电化学机理. CV、SEM结果表明, 氧化铜在首次充电过程中被还原成低价态沉积在合金颗粒表面, 由于氧化铜比容量远大于合金, 可以通过掺杂氧化铜调节合金的储备容量. 电化学测试结果表明, 掺杂合金电极具有更好的高倍率充放电能力和循环性能. EIS分析结果表明, 掺杂合金电极导电性增强, 电化学活性提高.  相似文献   

7.
罗贤  吕桂琴 《无机化学学报》2011,27(9):1705-1708
运用自组装和电化学组装联用方法,将镍卟啉配合物THPPNi和Keggin型硅钨酸SiW12修饰到玻碳电极上,制备镍卟啉修饰电极和镍卟啉/硅钨酸复合修饰电极,研究其在DMF溶液中的电化学行为,测定在碱性条件下对NO2-和BrO3-的电催化性能。循环伏安和交流阻抗研究结果表明,复合修饰电极THPPNi/SiW12的电极过程属于扩散控制过程;复合修饰电极优于单一修饰金属卟啉和多酸修饰电极。  相似文献   

8.
V2.1TiNi0.4Zrx(x=0~0.06)储氢电极合金的相结构及电化学性能*   总被引:1,自引:0,他引:1  
系统研究了V2.1TiNi0.4Zrx(x=0耀0.06)储氢电极合金的相结构及电化学性能. 相结构分析表明, 所有合金均由体心立方(bcc)结构的V 基固溶体主相和第二相组成, 且第二相沿主相晶界形成三维网状分布;其中, 当Zr 含量x 臆0.02时合金的第二相为TiNi基相, 而当Zr含量x达0.04时, 其第二相变为C14型Laves相, 且主相和第二相的晶胞体积均随着x 的增加而增大.电化学性能测试表明, 添加Zr 元素可以改善合金的活化性能和提高最大放电容量; 同时, 随着Zr 含量x 的增大, 合金的高倍率放电性能得到明显提高, 但充放电循环稳定性逐渐降低. 在所研究的合金样品中, V2.1TiNi0.4Zr0.04合金具有相对较好的综合性能.  相似文献   

9.
用机械球磨法(MA)成功合成了镁基储氢合金MgNi, Mg0.9Ti0.1Ni和Mg0.9Ti0.1Ni0.9Co0.1。研究了其结构和电化学性能。X射线衍射(XRD)和扫描电镜(SEM)结果表明合金为非晶结构,并有少量的Ni衍射峰存在。充放电测试结果表明这一系列合金具有很好的电化学活性。Ti和Co的替代使合金的循环稳定性好于MgNi合金。50周充放电循环后,Mg0.9Ti0.1Ni0.9Co0.1合金的放电容量明显好于MgNi合金,Mg0.9Ti0.1Ni0.9Co0.1的放电容量比MgNi合金高102.8%,比Mg0.9Ti0.1Ni合金高45.49%。在充放电循环过程中,合金电极容量衰减的主要原因是在合金电极表面Mg变成了Mg(OH)2。Tafel极化测试表明Ti和Co的添加可以提高合金电极在碱液中的抗腐蚀性能和提高合金电极的循环稳定性。EIS测试结果表明Ti和Co的替代可以明显提高MgNi型合金表面的电催化活性。  相似文献   

10.
钴的添加形式对氢氧化镍电极性能的影响   总被引:13,自引:0,他引:13  
原鲜霞  王荫东  詹锋 《电化学》2000,6(1):65-71
研究了钴元素分别以Co ,CoO ,Co +CoO三种形式作为添加剂并分别以与Ni(OH) 2 用机械混合的方式添加到电极活性物质中时对镍电极性能的影响 ,用循环伏安法和电化学交流阻抗法对实验结果进行分析 .结果表明 :对于机械混合的添加方式 ,Co ,CoO和Co +CoO三种形式的钴添加剂均可在一定程度上改善镍电极的性能 .其中 ,当钴以CoO的形式添加时镍电极的性能最好 .这是因为三种形式的添加剂均在一定程度上改善了活性物质Ni(OH) 2 的结构、增强了电极中质子的传输能力 ,从而提高了镍电极反应的可逆性 ,强化了镍电极的析氧极化 ,并提高了镍电极的充电效率 ,其中CoO的作用效果最明显 .  相似文献   

11.
添加元素对AB2型Laves相合金电化学性能的影响   总被引:3,自引:0,他引:3  
比较系统地研究了AB2型Laves相合金Zr0.9Ti0.1Ni0.1Mn0.7V0.3M0.1(M=None,Ni.Mn.V.Co.Cr.Al.Fe,Mo.Si.C.Zn,Cu和B)的相结构和电化学性能以及高温和低温放电性能等.结果表明.14种合金均具有六方C14型Laves相的主相晶体结构.同时,含有少量立方Cl5型Laves相和一些由Zr9Ni11及ZrNi组成的非Laves相;添加V和Mn可提高AB2合金的放电容量;添加B和Mn则显著提高了AB2合金的高倍率放电性能和低温放电容量;添加Al,C.Si和Co对合金电极的循环稳定性改善明显;而Mn.Ni.V.Fe.Cu.Mo和B等却不同程度地降低了循环稳定性;添加Si.Mo,V,Cr和Al可明显改善合金电极的自放电性能;添加Si.Cr.V可显著改善AB2合金电极的高温放电性能.讨论了各种添加元素影响合金性能的可能原因.  相似文献   

12.
氢气在贮氢合金电极上析出反应机理的研究   总被引:4,自引:0,他引:4  
卢世刚  刘庆国 《电化学》1998,4(3):265-272
贮氢合金电极上氢气的析出反应分为水分子的放电和吸附氢原子复合脱附两个步骤,即反应按Volmer-Tafel机理进行,反应的超电势η可以区分为η1和η2两个组成部分,反映了Volmer和Tafel反应的极化特征。析氢反应的速度由二者混合控制,在高超电势区,主要则由Volmer反应所控制。  相似文献   

13.
陈惠  唐有根  唐征 《电化学》2003,9(4):402-409
以贮氢合金电极作催化还原电极,恒电位电解葡萄糖,发现合金经表面处理及电极的活化后,即可提高电流效率,在最优条件下,电解葡萄糖制山梨醇电流效率高达90%,葡萄糖转化率达80%以上.测试了电极的使用寿命,同时对电极中毒及再生方法进行了探讨.  相似文献   

14.
Mg-Fe-Ni非晶储氢电极材料的微结构和电化学性能   总被引:3,自引:0,他引:3  
采用XRD、SEM、电化学测试等方法研究了机械球磨合成的Mg-Fe-Ni非晶储氢电极材料的微结构和电化学储氢性能. 结果表明, 镁含量和镍粉添加量对复合物的电化学性能有显著影响. 对于(xMg+Fe)+200% (质量分数, 余同)Ni (x=2、3) 复合物, 随Mg含量增加, 最大放电容量增大. 当x=2、3时复合物的最大放电容量分别为391.9、480.8 mA•h•g-1. 无镍的(3Mg+Fe)复合物最大放电容量仅为23.8 mA•h•g-1;对于(3Mg+Fe)+y% Ni (y=0、50、100、200), 随着镍添加量的增加, 球磨120 h合成复合物的最大放电容量先增加后减小,并在y=100时达到最高值519.5 mA•h•g-1. 微结构分析表明,无镍的Mg-Fe复合物经120 h球磨后仍为Mg和Fe两个单相混合组织, 无新相产生, 而加入镍粉有助于Mg-Fe非晶相的形成, Ni还起到良好的表面电催化作用, 改善了非晶Mg-Fe-Ni复合物的电化学性能.  相似文献   

15.
以TiMnx (x = 1.4, 1.5, 1.6, 1.7)非计量比合金为对象,系统研究了储氢容量与其内在结构之间的相关性。结果表明,所有合金的主相均为C14型Laves相,但其储氢容量却存在显著差异。其中TiMn1.4合金的储氢量约为0.65% (w,质量分数),吸/放氢平台较倾斜,且存在明显的滞后;而TiMn1.5合金的可逆储氢量达到1.2% (w),平台较为平坦;但继续增加x,其储氢量反而降低,如x = 1.6合金的储氢量仅为0.30% (w),而x = 1.7合金则几乎不吸氢。进一步结构解析表明,上述储氢容量的迥异主要归因于部分Ti原子占据Mn(2a)位置,且其占位率随x的增加而降低,随之C14相中贮氢四面体间隙体积减小;而引起贮氢四面体间隙体积发生变化的主要因素是Ti―Ti键和Mn(2a)―Mn(2a)键的键长,其中Mn(2a)―Mn(2a)键长的增加对合金储氢容量的提升起关键作用。  相似文献   

16.
利用真空感应熔炼和退火方法制备了LaMg8.40Ni2.34合金. 采用X射线衍射(XRD)分析、扫描电镜(SEM)和压力-组成-温度(PCT)测试仪测试了合金的相组成、微观形貌和储氢性能. LaMg8.40Ni2.34合金由La2Mg17、LaMg2Ni和Mg2Ni组成,且在第一次吸放氢循环中就可以完全活化. 在558 K下的可逆储氢量为3.01%(质量分数), 合金的PCT曲线表现出双吸氢平台, 分别对应着形成的MgH2和Mg2NiH4. 但是放氢曲线却只有一个平台出现, 这是由MgH2和Mg2NiH4之间的协同脱氢作用产生的. LaMg8.40Ni2.34合金在吸放氢时的活化能分别为(52.4±0.4)和(59.2±0.1) kJ·mol-1, 均低于Mg2Ni合金. 与纯Mg和Mg2Ni合金相比, LaMg8.40Ni2.34合金具有良好的活化性能、较高的储氢性能和优良的动力学性能.  相似文献   

17.
低钴AB5型稀土系贮氢电极合金的研究   总被引:5,自引:0,他引:5  
为了进一步降低AB5型混合稀土系贮氢合金的成本,采用Cr,Si,Cu替代Co和调节化学计量比的方法制备低钴AB5型贮氢合金。结果表明:3种取代元素在寿命方面的效果依次为Si>Cr>Cu,在放电容量和活化性能方面依次是Cu>Cr>Si。Cr,Cu,Si只有少量的替代才可能发挥其有利影响;通过非化学计量比的调节,低钴混合稀土系贮氢电极合金的放电容量、活化性能及倍率放电能力都能较好地达到实用要求,但是循环寿命有待提高。  相似文献   

18.
贮氢合金的吸放氢性能测定   总被引:4,自引:0,他引:4  
贮氢合金的吸放氢量,压力组成等温线,以及吸放氢过程的热力学函数变化诸性能的测定,离不开一套适宜的高压一真空实验装置.不少研究者曾报导过较简单的仪器装置[1-4].还有将吸氢装置配以色谱仪和质谱仪来研究合金的吸氢与中毒问.为测定各类贮氢合金的吸氢性能本实验室研制并装配了一种准确实用的实验装置,可在-196℃至+500℃和16MPa-0.0001MPa氢压范围内获得准确的平衡数据.1实验装置与仪器实验装置由阀件、压力表、压力传感数字低压计、真空泵和反应器组成(图1).全部管路为外径rk3mm的不锈钢管.阀件是自行设计的高压微型阀…  相似文献   

19.
本文将量子电化学热活化理论的氢电极反应的电子传递条件式在紧密双电层中展开,得到该电极反应的绝对电极电位表达式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号