首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ab initio molecular orbital (MO) and hybrid density functional theory (DFT) calculations have been applied to the initial step of the acylation reaction catalyzed by acetylcholinesterase (AChE), which is the nucleophiric addition of Ser200 in catalytic triads to a neurotransmitter acetylcholine (ACh). We focus our attention mainly on the effects of oxyanion hole and Glu327 on the potential energy surfaces (PESs) for the proton transfer reactions in the catalytic triad Ser200-His440-Glu327. The activation barrier for the addition reaction of Ser200 to ACh was calculated to be 23.4 kcal/mol at the B3LYP/6-31G(d)//HF/3-21G(d) level of theory. The barrier height under the existence of oxyanion hole, namely, Ser200-His440-Glu327-ACh-(oxyanion hole) system, decreased significantly to 14.2 kcal/mol, which is in reasonable agreement with recent experimental value (12.0 kcal/mol). Removal of Glu327 from the catalytic triad caused destabilization of both energy of transition state for the reaction and tetrahedral intermediate (product). PESs calculated for the proton transfer reactions showed that the first proton transfer process is the most important in the stabilization of tetrahedral intermediate complex. The mechanism of addition reaction of ACh was discussed on the basis of theoretical results.  相似文献   

2.
Acylation of acetylcholine (ACh) catalyzed by acetylcholinesterase (AChE) has been studied using high-level theoretical calculations on a model system that mimics the reaction center of the enzyme, and compared with uncatalyzed acylation reaction. The geometries of all the intermediates and transition states, activation energies, and solvent effects have been calculated. The calculations predict simultaneous formation of two short-strong hydrogen bonds (SSHB) in the rate-determining transition state structures [the first SSHB involves the hydrogen atom of Ser-200 (H(s)) and another involves the hydrogen atom of His-440 (H(h))]. In the intermediate states, the H-bond corresponding to H(h) involves SSHB, whereas the one corresponding to H(s) does not.  相似文献   

3.
Molecular dynamics (MD) simulations and hydrogen bonding energy (HBE) calculations have been performed on the prereactive enzyme-substrate complexes (ES), transition states (TS1), and intermediates (INT1) for acetylcholinesterase (AChE)-catalyzed hydrolysis of acetylcholine (ACh), butyrylcholinesterase (BChE)-catalyzed hydrolysis of ACh, and BChE-catalyzed hydrolysis of (+)/(-)-cocaine to examine the protein environmental effects on the catalytic reactions. The hydrogen bonding of cocaine with the oxyanion hole of BChE is found to be remarkably different from that of ACh with AChE/BChE. Whereas G121/G116, G122/G117, and A204/A199 of AChE/BChE all can form hydrogen bonds with ACh to stabilize the transition state during the ACh hydrolysis, BChE only uses G117 and A199 to form hydrogen bonds with cocaine. The change of the estimated total HBE from ES to TS1 is ca. -5.4/-4.4 kcal/mol for AChE/BChE-catalyzed hydrolysis of ACh and ca. -1.7/-0.8 kcal/mol for BChE-catalyzed hydrolysis of (+)/(-)-cocaine. The remarkable difference of approximately 3 to 5 kcal/mol reveals that the oxyanion hole of AChE/BChE can lower the energy barrier of the ACh hydrolysis significantly more than that of BChE for the cocaine hydrolysis. These results help to understand why the catalytic activity of AChE against ACh is considerably higher than that of BChE against cocaine and provides valuable clues on how to improve the catalytic activity of BChE against cocaine.  相似文献   

4.
The initial step of the acylation reaction catalyzed by acetylcholinesterase (AChE) has been studied by a combined ab initio quantum mechanical/molecular mechanical (QM/MM) approach. The reaction proceeds through the nucleophilic addition of the Ser203 O to the carbonyl C of acetylcholine, and the reaction is facilitated by simultaneous proton transfer from Ser203 to His447. The calculated potential energy barrier at the MP2(6-31+G) QM/MM level is 10.5 kcal/mol, consistent with the experimental reaction rate. The third residue of the catalytic triad, Glu334, is found to be essential in stabilizing the transition state through electrostatic interactions. The oxyanion hole, formed by peptidic NH groups from Gly121, Gly122, and Ala204, is also found to play an important role in catalysis. Our calculations indicate that, in the AChE-ACh Michaelis complex, only two hydrogen bonds are formed between the carbonyl oxygen of ACh and the peptidic NH groups of Gly121 and Gly122. As the reaction proceeds, the distance between the carbonyl oxygen of ACh and NH group of Ala204 becomes smaller, and the third hydrogen bond is formed both in the transition state and in the tetrahedral intermediate.  相似文献   

5.
Understanding the mechanisms by which beta-lactamases destroy beta-lactam antibiotics is potentially vital in developing effective therapies to overcome bacterial antibiotic resistance. Class A beta-lactamases are the most important and common type of these enzymes. A key process in the reaction mechanism of class A beta-lactamases is the acylation of the active site serine by the antibiotic. We have modeled the complete mechanism of acylation with benzylpenicillin, using a combined quantum mechanical and molecular mechanical (QM/MM) method (B3LYP/6-31G+(d)//AM1-CHARMM22). All active site residues directly involved in the reaction, and the substrate, were treated at the QM level, with reaction energies calculated at the hybrid density functional (B3LYP/6-31+Gd) level. Structures and interactions with the protein were modeled by the AM1-CHARMM22 QM/MM approach. Alternative reaction coordinates and mechanisms have been tested by calculating a number of potential energy surfaces for each step of the acylation mechanism. The results support a mechanism in which Glu166 acts as the general base. Glu166 deprotonates an intervening conserved water molecule, which in turn activates Ser70 for nucleophilic attack on the antibiotic. This formation of the tetrahedral intermediate is calculated to have the highest barrier of the chemical steps in acylation. Subsequently, the acylenzyme is formed with Ser130 as the proton donor to the antibiotic thiazolidine ring, and Lys73 as a proton shuttle residue. The presented mechanism is both structurally and energetically consistent with experimental data. The QM/MM energy barrier (B3LYP/ 6-31G+(d)//AM1-CHARMM22) for the enzymatic reaction of 9 kcal mol(-1) is consistent with the experimental activation energy of about 12 kcal mol(-1). The effects of essential catalytic residues have been investigated by decomposition analysis. The results demonstrate the importance of the "oxyanion hole" in stabilizing the transition state and the tetrahedral intermediate. In addition, Asn132 and a number of charged residues in the active site have been identified as being central to the stabilizing effect of the enzyme. These results will be potentially useful in the development of stable beta-lactam antibiotics and for the design of new inhibitors.  相似文献   

6.
We present results from ab initio and density functional theory studies of the mechanism for serine hydrolase catalyzed ester hydrolysis. A model system containing both the catalytic triad and the oxyanion hole was studied. The catalytic triad was represented by formate anion, imidazole, and methanol. The oxyanion hole was represented by two water molecules. Methyl formate was used as the substrate. In the acylation step, our computations show that the cooperation of the Asp group and oxyanion hydrogen bonds is capable of lowering the activation barrier by about 15 kcal/mol. The transition state leading to the first tetrahedral intermediate in the acylation step is rate limiting with an activation barrier (ΔE0) of 13.4 kcal/mol. The activation barrier in the deacylation step is smaller. The double-proton-transfer mechanism is energetically unfavorable by about 2 kcal/mol. The bonds between the Asp group and the His group, and the hydrogen bonds in the oxyanion hole, increase in strength going from the Michaelis complex toward the transition state and the tetrahedral intermediate. In the acylation step, the tetrahedral intermediate is a very shallow minimum on the energy surface and is not viable when molecular vibrations are included. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 69: 89–103, 1998  相似文献   

7.
Potential energy surfaces for the phosphonylation of sarin and acetylcholinesterase (AChE) have been theoretically studied at the B3LYP/6-311G(d,p) level of theory. The obtained results show that the phosphonylation process involves a two-step addition-elimination mechanism, with the first step (addition process) being the rate-determining step, while by comparison, the ensuing steps are very rapid. Stable trigonal bipyramidal intermediates are formed in the studied pathways. It is also revealed that the catalytic triad of acetylcholinesterase plays the catalytic role in the reaction by speeding up the phosphonylation process, as it does in the acylation reaction of ACh and AChE. The effect of aqueous solvation was accounted for via the polarizable continuum model. It is concluded that the enzymatic reaction here is influenced strongly by the solvent environment.  相似文献   

8.
In a previous communication, kinetic β-deuterium secondary isotope effects were reported that support a mechanism for substrate-activated turnover of acetylthiocholine by human butyrylcholinesterase (BuChE) wherein the accumulating reactant state is a tetrahedral intermediate ( Tormos , J. R. ; et al. J. Am. Chem. Soc. 2005 , 127 , 14538 - 14539 ). In this contribution additional isotope effect experiments are described with acetyl-labeled acetylthiocholines (CL(3)COSCH(2)CH(2)N(+)Me(3); L = H or D) that also support accumulation of the tetrahedral intermediate in Drosophila melanogaster acetylcholinesterase (DmAChE) catalysis. In contrast to the aforementioned BuChE-catalyzed reaction, for this reaction the dependence of initial rates on substrate concentration is marked by pronounced substrate inhibition at high substrate concentrations. Moreover, kinetic β-deuterium secondary isotope effects for turnover of acetylthiocholine depended on substrate concentration, and gave the following: (D3)k(cat)/K(m) = 0.95 ± 0.03, (D3)k(cat) = 1.12 ± 0.02 and (D3)βk(cat) = 0.97 ± 0.04. The inverse isotope effect on k(cat)/K(m) is consistent with conversion of the sp(2)-hybridized substrate carbonyl in the E + A reactant state into a quasi-tetrahedral transition state in the acylation stage of catalysis, whereas the markedly normal isotope effect on k(cat) is consistent with hybridization change from sp(3) toward sp(2) as the reactant state for deacylation is converted into the subsequent transition state. Transition states for Drosophila melanogaster AChE-catalyzed hydrolysis of acetylthiocholine were further characterized by measuring solvent isotope effects and determining proton inventories. These experiments indicated that the transition state for rate-determining decomposition of the tetrahedral intermediate is stabilized by multiple protonic interactions. Finally, a simple model is proposed for the contribution that tetrahedral intermediate stabilization provides to the catalytic power of acetylcholinesterase.  相似文献   

9.
The reaction mechanisms of the alkaline hydrolysis of N-methylcarbamates were studied using the AM1 method by assuming two possible pathways: (1) nucleophilic attack of hydroxide ion on the carbonyl carbon to give a tetrahedral complex followed by its breakdown to carbamic acid (BAC2); and (2) proton abstraction by hydroxide ion at the nitrogen atom followed by elimination of the alkoxide ion to form N-methyl isocyanate (E1cB). Reaction coordinate analysis showed that the reaction mechanism is determined by both the stability of an intermediate and the energy barrier for elimination.  相似文献   

10.

Abstract  

Density functional theory has been used to study the mechanism of bromide oxidation by the oxo-peroxo complex K[VO(O2)Hheida] (heida = N-(2-hydroxyethyl)iminodiacetic acid), which has the highest reported rate constant for bromide oxidation of any vanadium complex. Two possible mechanisms were explored, involving bromide attack on a protonated or unprotonated peroxo atom. The direct nucleophilic attack of bromide on a protonated peroxo begins the reaction, i.e. the protonated peroxo ligand is the active site of reaction. We examined five different transition states in the mechanism. Two transition states were found to have lower activation barriers. A reduction in the potential energy barriers, when calculated using the polarisable continuum model, indicates that with the involvement of acetonitrile as a solvent the transition states become more stable.  相似文献   

11.
A joint QM/MM and ab initio study on the decomposition of urea in the gas phase and in aqueous solution is reported. Numerous possible mechanisms of intramolecular decomposition and hydrolysis have been explored; intramolecular NH3 elimination assisted by a water molecule is found to have the lowest activation energy. The solvent effects were elucidated using the TIP4P explicit water model with free energy perturbation calculations in conjunction with QM/MM Monte Carlo simulations. The explicit representation of the solvent was found to be essential for detailed resolution of the mechanism, identification of the rate-determining step, and evaluation of the barrier. The assisting water molecule acts as a hydrogen shuttle for the first step of the elimination reaction. The forming zwitterionic intermediate, H3NCONH, participates in 8-9 hydrogen bonds with water molecules. Its decomposition is found to be the rate-limiting step, and the overall free energy of activation for the decomposition of urea in water is computed to be approximately 37 kcal/mol; the barrier for hydrolysis by an addition/elimination mechanism is found to be approximately 40 kcal/mol. The differences in the electronic structure of the transition states of the NH3 elimination and hydrolysis were examined via natural bond order analysis. Destruction of urea's resonance stabilization during hydrolysis via an addition/elimination mechanism and its preservation in the rearrangement to the H3NCONH intermediate were identified as important factors in determining the preferred reaction route.  相似文献   

12.
Reaction mechanisms of the amide hydrolysis from the protonated, neutral, and deprotonated forms of N-(o-carboxybenzoyl)-l-amino acid have been investigated by use of the B3LYP density functional method. Our calculations reveal that in the amide hydrolysis the reaction barrier is significantly lower in solution than that in the gas phase, in contrast with the mechanism for imide formation in which the solvent has little influence on the reaction barrier. In the model reactions, the water molecules function both as a catalyst and as a reactant. The reaction mechanism starting from the neutral form of N-(o-carboxybenzoyl)-l-amino acid, which corresponds to pH 0-3, is concluded to be the most favored, and a concerted mechanism is more favorable than a stepwise mechanism. This conclusion is in agreement with experimental observations that the optimal pH range for amide hydrolysis of N-(o-carboxybenzoyl)-l-leucine is pH 0-3 where N-(o-carboxybenzoyl)-l-leucine is predominantly in its neutral form. We suggest that besides the acid-catalyzed mechanism the addition-elimination mechanism is likely to be an alternative choice for cleaving an amide bond. For the reaction mechanism initiated by protonation at the amidic oxygen (hydrogen ion concentration H(0) < -1), the reaction of the model compound with two water molecules lowers the transition barrier significantly compared with that involving a single water molecule.  相似文献   

13.
应用量子化学和分子力学方法研究乙酰胆碱酯酶催化疏代乙酰胆碱水解反应中的乙酰化反应,计算了反应物、过渡态、产物及中间体的几何结构-及电子结构.结果表明,乙酰化反应机理是质子化和亲核进攻同时进行的协同机理.  相似文献   

14.
15.
Spiroorthocarbonates (SOCs) are monomers that have been shown to expand when homopolymerized. SOCs are potential monomer systems that can be combined with other monomers such as epoxy resin to produce a non-shrinking dental matrix for dental composites. The purpose of this study was to use a computer model (AM1) to study possible homopolymerization pathways for several SOC monomers. The gas phase transition states of three feasible reaction mechanisms for the homopolymerization of four spiroorthocarbonate 1,5,7,11-tetraoxaspiro[5,5]undecane (TOSU) systems have been examined using the AM1 semiempirical quantum mechanical model. In addition to the base TOSU noted above, the 2,8-dimethyl, 2,4,8,10-tetramethyl, and the 3,3,9,9-tetramethyl analogs were used in this study. The results of these calculations produced the heats of reaction, activation enthalpies and transition state structures. Our calculations indicate stabilization of the transition states by electron-donating and resonance-stabilizing substituent groups. The energies of activation of all of these systems were between 24 and 38 kcal/mol and all reactions were endothermic. Further, we found that there was a significant intermolecular attraction between TOSU monomers (≈3.5 kcal/mol). When compared with experimental studies of methylated TOSU by Sakai and co-workers, our calculations agree with the preferred site of nucleophilic attack, but not with the experimental rate results. It was concluded that the homopolymerization of the unsubstituted TOSU and its derivatives studied was endothermic and that the rate of homopolymerization of TOSU depends on an intermolecular pre-association of TOSU monomer in the condensed phase.  相似文献   

16.
The mechanisms of proton transfer in associates of two molecules of formic acid with two molecules of water or hydrogen fluoride were studied usingab initio (SCF/6-31G**) method. Cooperative (concerted, or one-step) four-proton transfer occurs in the associates studied. The structures of the transition states are in complete agreement with the previously proposed concept of stereochemical correspondence for cooperative reactions. The calculated energy barriers to cooperative proton transfer in the associates investigated are 32.9 and 24.2 kcal mol–1, respectively.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2636–2640, November, 1996.  相似文献   

17.
With the aid of atomic force microscopy, the intermolecular forces between acetyleholinesterases (AChE) and its natural substrate acetylcholine (ACh) have been studied. Through force spectrum measurement based on imaging of AChE molecules it was found that the attraction force between individual molecule pairs of ACh and AChE was (10±1) pN just before the quaternary ammonium head of ACh got into contact with the negative end of AChE and the decaying distance of attraction was (4±1) nm from the surface of ACHE. The adhesion force between individual ACh and AChE molecule pairs was (25±2) pN, which had a decaying feature of fast-slow-fast (FSF). The attraction forces between AChE and choline (Ch), the quaternary ammonium moiety and hydrolysate of ACh molecule, were similar to those between AChE and ACh. The adhesion forces between AChE and Ch were (20±2) pN, a little weaker than that between ACh and ACHE. These results indicated that AChE had a steering role for the diffusion of ACh toward it and had r  相似文献   

18.
The transition states for unimolecular HF elimination from a series of methylene halides and vinyl halides have been located and properly characterized at the AM 1, MNDO , PM 3, RHF /6-311G (d, p), and MP 2/6-311G (d, p) levels. Whereas the semiempirical MO methods deal well with the structures of the stable molecules, the structural differences between the ab initio and semiempirical transition states are considerably larger. The AM 1 and PM 3 activation energies appear to be relatively more accurate. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
We present a generalization of the reaction coordinate driven method to find reaction paths and transition states for complicated chemical processes, especially enzymatic reactions. The method is based on the definition of a subset of chemical coordinates; it is simple, robust, and suitable to calculate one or more alternative pathways, intermediate minima, and transition-state geometries. Though the results are approximate and the computational cost is relatively high, the method works for large systems, where others often fail. It also works when a certain reaction path competes with others having a lower energy barrier. Accordingly, the procedure is appropriate to test hypothetical reaction mechanisms for complicated systems and provides good initial guesses for more accurate methods. We present tests on a number of simple reactions and on several complicated chemical transformations and compare the results with those obtained by other methods. Calculation of the reaction path for the enzymatic hydrolysis of the substrate by dUTPase for an active-site model with 85 atoms, including several loosely bound water molecules, indicates that the method is feasible for the study of enzyme mechanisms.  相似文献   

20.
The kinetics of acylation of ammonia with 4-nitrophenylbenzoates in water-2-propanol mixtures was studied. Increase in the reaction rate with increasing proportion of water in the system is attributed to the formation of ammonia solvato complexes with the components of the solvent. By the RHF/6-31G* method were calculated structural and energetic properties of the solvato complexes. The potential energy surfaces of the acylation reaction of ammonia and its solvato complexes were calculated. It was shown that solvation of the transition state decreases the reaction activation energy compared to the gas-phase process. All the reactions proceed by S N2 mechanism without formation of intermediates, with only one transition state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号