首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A velocity–vorticity formulation of the Navier–Stokes equations is presented as an alternative to the primitive variables approach. The velocity components and the vorticity are solved for in a fully coupled manner using a Newton method. No artificial viscosity is required in this formulation. The pressure is updated by a method allowing natural imposition of boundary conditions. Incompressible and subsonic results are presented for two-dimensional laminar internal flows up to high Reynolds numbers.  相似文献   

2.
The numerical method of lines (NUMOL) is a numerical technique used to solve efficiently partial differential equations. In this paper, the NUMOL is applied to the solution of the two‐dimensional unsteady Navier–Stokes equations for incompressible laminar flows in Cartesian coordinates. The Navier–Stokes equations are first discretized (in space) on a staggered grid as in the Marker and Cell scheme. The discretized Navier–Stokes equations form an index 2 system of differential algebraic equations, which are afterwards reduced to a system of ordinary differential equations (ODEs), using the discretized form of the continuity equation. The pressure field is computed solving a discrete pressure Poisson equation. Finally, the resulting ODEs are solved using the backward differentiation formulas. The proposed method is illustrated with Dirichlet boundary conditions through applications to the driven cavity flow and to the backward facing step flow. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
This paper is concerned with the numerical resolution of the incompressible Navier–Stokes equations in the velocity–vorticity form on non-orthogonal structured grids. The discretization is performed in such a way, that the discrete operators mimic the properties of the continuous ones. This allows the discrete equivalence between the primitive and velocity–vorticity formulations to be proved. This last formulation can thus be seen as a particular technique for solving the primitive equations. The difficulty associated with non-simply connected computational domains and with the implementation of the boundary conditions are discussed. One of the main drawback of the velocity–vorticity formulation, relative to the additional computational work required for solving the additional unknowns, is alleviated. Two- and three-dimensional numerical test cases validate the proposed method. © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
A discretization method is presented for the full, steady, compressible Navier–Stokes equations. The method makes use of quadrilateral finite volumes and consists of an upwind discretization of the convective part and a central discretization of the diffusive part. In the present paper the emphasis lies on the discretization of the convective part. The solution method applied solves the steady equations directly by means of a non-linear relaxation method accelerated by multigrid. The solution method requires the discretization to be continuously differentiable. For two upwind schemes which satisfy this requirement (Osher's and van Leer's scheme), results of a quantitative error analysis are presented. Osher's scheme appears to be increasingly more accurate than van Leer's scheme with increasing Reynolds number. A suitable higher-order accurate discretization of the convection terms is derived. On the basis of this higher-order scheme, to preserve monotonicity, a new limiter is constructed. Numerical results are presented for a subsonic flat plate flow and a supersonic flat plate flow with oblique shock wave–boundary layer interaction. The results obtained agree with the predictions made. Useful properties of the discretization method are that it allows an easy check of false diffusion and that it needs no tuning of parameters.  相似文献   

5.
A new finite volume method for the incompressible Navier–Stokes equations, expressed in arbitrary Lagrangian–Eulerian (ALE) form, is presented. The method uses a staggered storage arrangement for the pressure and velocity variables and adopts an edge‐based data structure and assembly procedure which is valid for arbitrary n‐sided polygonal meshes. Edge formulas are presented for assembling the ALE form of the momentum and pressure equations. An implicit multi‐stage time integrator is constructed that is geometrically conservative to the precision of the arithmetic used in the computation. The method is shown to be second‐order‐accurate in time and space for general time‐dependent polygonal meshes. The method is first evaluated using several well‐known unsteady incompressible Navier–Stokes problems before being applied to a periodically forced aeroelastic problem and a transient free surface problem. Published in 2003 by John Wiley & Sons, Ltd.  相似文献   

6.
A new computational code for the numerical integration of the three-dimensional Navier–Stokes equations in their non-dimensional velocity–pressure formulation is presented. The system of non-linear partial differential equations governing the time-dependent flow of a viscous incompressible fluid in a channel is managed by means of a mixed spectral–finite difference method, in which different numerical techniques are applied: Fourier decomposition is used along the homogeneous directions, second-order Crank–Nicolson algorithms are employed for the spatial derivatives in the direction orthogonal to the solid walls and a fourth-order Runge–Kutta procedure is implemented for both the calculation of the convective term and the time advancement. The pressure problem, cast in the Helmholtz form, is solved with the use of a cyclic reduction procedure. No-slip boundary conditions are used at the walls of the channel and cyclic conditions are imposed at the other boundaries of the computing domain. Results are provided for different values of the Reynolds number at several time steps of integration and are compared with results obtained by other authors. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
A new numerical procedure for solving the two‐dimensional, steady, incompressible, viscous flow equations on a staggered Cartesian grid is presented in this paper. The proposed methodology is finite difference based, but essentially takes advantage of the best features of two well‐established numerical formulations, the finite difference and finite volume methods. Some weaknesses of the finite difference approach are removed by exploiting the strengths of the finite volume method. In particular, the issue of velocity–pressure coupling is dealt with in the proposed finite difference formulation by developing a pressure correction equation using the SIMPLE approach commonly used in finite volume formulations. However, since this is purely a finite difference formulation, numerical approximation of fluxes is not required. Results presented in this paper are based on first‐ and second‐order upwind schemes for the convective terms. This new formulation is validated against experimental and other numerical data for well‐known benchmark problems, namely developing laminar flow in a straight duct, flow over a backward‐facing step, and lid‐driven cavity flow. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Relaxation-based multigrid solvers for the steady incompressible Navier–Stokes equations are examined to determine their computational speed and robustness. Four relaxation methods were used as smoothers in a common tailored multigrid procedure. The resulting solvers were applied to three two-dimensional flow problems, over a range of Reynolds numbers, on both uniform and highly stretched grids. In all cases the L2 norm of the velocity changes is reduced to 10?6 in a few 10's of fine-grid sweeps. The results of the study are used to draw conciusions on the strengths and weaknesses of the individual relaxation methods as well as those of the overall multigrid procedure when used as a solver on highly stretched grids.  相似文献   

9.
The aim of this paper is to develop a methodology for solving the incompressible Navier–Stokes equations in the presence of one or several open boundaries. A new set of open boundary conditions is first proposed. This has been developed in the context of the velocity–vorticity formulation, but it is also emphasized how it can be formally extended to the equations in primitive variables. The case of a domain involving several independent open boundaries is considered next. An influence matrix technique is applied such that the inlet mass flux is split onto the several outlets in order to enforce the prescribed mean pressure at each outlet. Both approaches are validated by numerical test cases. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
A fictitious time is introduced into the unsteady equation of the stream function rendering it into a higher‐order ultra‐parabolic equation. The convergence with respect to the fictitious time (we call the latter ‘internal iterations’) allows one to obtain fully implicit nonlinear scheme in full time steps for the physical‐time variable. For particular choice of the artificial time increment, the scheme in full time steps is of second‐order of approximation. For the solution of the internal iteration, a fractional‐step scheme is proposed based on the splitting of the combination of the Laplace, bi‐harmonic and advection operators. A judicious choice for the time staggering of the different parts of the nonlinear advective terms allows us to prove that the internal iterations are unconditionally stable and convergent. We assess the number of operations needed per time step and show computational effectiveness of the proposed scheme. We prove that when the internal iterations converge, the scheme is second‐order in physical time and space, nonlinear, implicit and absolutely stable. The performance of the scheme is demonstrated for the flow created by oscillatory motion of the lid of a square cavity. All theoretical findings are demonstrated practically. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
The advent of vector and massively parallel computers offers researchers the possibility of enormous gains in execution time for scientific and engineering programs. From the numerical point of view, such programs are frequently based on the inversion of sparse, diagonally banded matrices. Conventional scalar solvers often perform poorly on vector machines due to short effective vector lengths, and thus appropriate methods must be chosen for use with vector machines. In this paper a number of commonly used solvers are tested for the Navier–Stokes equations, in both scalar and vector form, on two vector architecture machines. A new method is presented which performs well in both vector and scalar form on a range of vector architectures.  相似文献   

12.
This paper describes the Eulerian–Lagrangian boundary element model for the solution of incompressible viscous flow problems using velocity–vorticity variables. A Eulerian–Lagrangian boundary element method (ELBEM) is proposed by the combination of the Eulerian–Lagrangian method and the boundary element method (BEM). ELBEM overcomes the limitation of the traditional BEM, which is incapable of dealing with the arbitrary velocity field in advection‐dominated flow problems. The present ELBEM model involves the solution of the vorticity transport equation for vorticity whose solenoidal vorticity components are obtained iteratively by solving velocity Poisson equations involving the velocity and vorticity components. The velocity Poisson equations are solved using a boundary integral scheme and the vorticity transport equation is solved using the ELBEM. Here the results of two‐dimensional Navier–Stokes problems with low–medium Reynolds numbers in a typical cavity flow are presented and compared with a series solution and other numerical models. The ELBEM model has been found to be feasible and satisfactory. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
The unsteady incompressible Navier–Stokes equations are formulated in terms of vorticity and stream-function in generalized curvilinear orthogonal co-ordinates to facilitate analysis of flow configurations with general geometries. The numerical method developed solves the conservative form of the vorticity transport equation using the alternating direction implicit method, whereas the streamfunction equation is solved by direct block Gaussian elimination. The method is applied to a model problem of flow over a backstep in a doubly infinite channel, using clustered conformal co-ordinates. One-dimensional stretching functions, dependent on the Reynolds number and the asymptotic behaviour of the flow, are used to provide suitable grid distribution in the separation and reattachment regions, as well as in the inflow and outflow regions. The optimum grid distribution selected attempts to honour the multiple length scales of the separated flow model problem. The asymptotic behaviour of the finite differenced transport equation near infinity is examined and the numerical method is carefully developed so as to lead to spatially second-order-accurate wiggle-free solutions, i.e. with minimum dispersive error. Results have been obtained in the entire laminar range for the backstep channel and are in good agreement with the available experimental data for this flow problem, prior to the onset of three-dimensionality in the experiment.  相似文献   

14.
An improved projection scheme is proposed and applied to pseudospectral collocation-Chebyshev approximation for the incompressible Navier–Stokes equations. It consists of introducing a correct predictor for the pressure, one which is consistent with a divergence-free velocity field at each time step. The main objective is to allow a time variation of the pressure gradient at boundaries. From different test problems, it is shown that this method, associated with a multistep second-order time scheme, provides a time accuracy of the same order as the temporal scheme used for the pressure, and also improves the prediction of the velocity slip. Moreover, it does not exhibit any numerical boundary layer mentioned as a drawback of fractional steps algorithm, and does not require the use of staggered grids for the velocity and the pressure. Its effectiveness is validated by comparison with a previous time-splitting algorithm proposed by Goda (K. Goda, J. Comput. Phys., 30 , 76–95 (1979)) and implemented by Gresho (P. Gresho, Int. j. numer. methods fluids, 11 , 587–620 (1990)) to finite element approximations. Steady and unsteady solutions for the regularized driven cavity and the rotating cavity submitted to throughflow are also used to assess the efficiency of this algorithm. © 1998 John Wiley & Sons, Ltd.  相似文献   

15.
A new artificial boundary condition for two‐dimensional subsonic flows governed by the compressible Navier–Stokes equations is derived. It is based on the hyperbolic part of the equations, according to the way of propagation of the characteristic waves. A reference flow, as well as a convection velocity, is used to properly discretize the terms corresponding to the entering waves. Numerical tests on various classical model problems, whose solutions are known, and comparisons with other boundary conditions (BCs), show the efficiency of the BC. Direct numerical simulations of more complex flows over a dihedral plate are simulated, without creation of acoustic waves going back in the flow. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
This paper describes the finite difference numerical procedure for solving velocity–vorticity form of the Navier–Stokes equations in three dimensions. The velocity Poisson equations are made parabolic using the false‐transient technique and are solved along with the vorticity transport equations. The parabolic velocity Poisson equations are advanced in time using the alternating direction implicit (ADI) procedure and are solved along with the continuity equation for velocities, thus ensuring a divergence‐free velocity field. The vorticity transport equations in conservative form are solved using the second‐order accurate Adams–Bashforth central difference scheme in order to assure divergence‐free vorticity field in three dimensions. The velocity and vorticity Cartesian components are discretized using a central difference scheme on a staggered grid for accuracy reasons. The application of the ADI procedure for the parabolic velocity Poisson equations along with the continuity equation results in diagonally dominant tri‐diagonal matrix equations. Thus the explicit method for the vorticity equations and the tri‐diagonal matrix algorithm for the Poisson equations combine to give a simplified numerical scheme for solving three‐dimensional problems, which otherwise requires enormous computational effort. For three‐dimensional‐driven cavity flow predictions, the present method is found to be efficient and accurate for the Reynolds number range 100?Re?2000. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
A numerical method based on radial basis function networks (RBFNs) for solving steady incompressible viscous flow problems (including Boussinesq materials) is presented in this paper. The method uses a ‘universal approximator’ based on neural network methodology to represent the solutions. The method is easy to implement and does not require any kind of ‘finite element‐type’ discretization of the domain and its boundary. Instead, two sets of random points distributed throughout the domain and on the boundary are required. The first set defines the centres of the RBFNs and the second defines the collocation points. The two sets of points can be different; however, experience shows that if the two sets are the same better results are obtained. In this work the two sets are identical and hence commonly referred to as the set of centres. Planar Poiseuille, driven cavity and natural convection flows are simulated to verify the method. The numerical solutions obtained using only relatively low densities of centres are in good agreement with analytical and benchmark solutions available in the literature. With uniformly distributed centres, the method achieves Reynolds number Re = 100 000 for the Poiseuille flow (assuming that laminar flow can be maintained) using the density of , Re = 400 for the driven cavity flow with a density of and Rayleigh number Ra = 1 000 000 for the natural convection flow with a density of . Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
A comparison of multigrid methods for solving the incompressible Navier–Stokes equations in three dimensions is presented. The continuous equations are discretised on staggered grids using a second‐order monotonic scheme for the convective terms and implemented in defect correction form. The convergence characteristics of a decoupled method (SIMPLE) are compared with those of the cellwise coupled method (SCGS). The convergence rates obtained for computations of the three‐dimensional lid‐driven cavity problem are found to be very similar to those obtained for computations of the corresponding two‐dimensional problem with comparable grid density. Although the convergence rate of SCGS is thus superior to that of SIMPLE, the decoupled method is found to be more efficient computationally and requires less computing time for a given level of convergence. The linewise implementation of the coupled method (CLGS) is also investigated and shown to be more efficient than SCGS, although the convergence rate and computing time required per cycle are both found to depend on the direction of sweep. The optimal implementation of CLGS is found to be only marginally more effective than SIMPLE, but a change to the structure of the data storage would increase the advantage. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
A simple error analysis is used within the context of segregated finite element solution scheme to solve incompressible fluid flow. An error indicator is defined based on the difference between a numerical solution on an original mesh and an approximated solution on a related mesh. This error indicator is based on satisfying the steady‐state momentum equations. The advantages of this error indicator are, simplicity of implementation (post‐processing step), ability to show regions of high and/or low error, and as the indicator approaches zero the solution approaches convergence. Two examples are chosen for solution; first, the lid‐driven cavity problem, followed by the solution of flow over a backward facing step. The solutions are compared to previously published data for validation purposes. It is shown that this rather simple error estimate, when used as a re‐meshing guide, can be very effective in obtaining accurate numerical solutions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents a numerical algorithm using the pseudostress–velocity formulation to solve incompressible Newtonian flows. The pseudostress–velocity formulation is a variation of the stress–velocity formulation, which does not require symmetric tensor spaces in the finite element discretization. Hence its discretization is greatly simplified. The discrete system is further decoupled into an H ( div ) problem for the pseudostress and a post‐process resolving the velocity. This can be done conveniently by using the penalty method for steady‐state flows or by using the time discretization for nonsteady‐state flows. We apply this formulation to the 2D lid‐driven cavity problem and study its grid convergence rate. Also, computational results of the time‐dependent‐driven cavity problem and the flow past rectangular problem are reported. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号