首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We introduce a new fourth order, semi-discrete, central-upwind scheme for solving systems of hyperbolic conservation laws. The scheme is a combination of a fourth order non-oscillatory reconstruction, a semi-discrete central-upwind numerical flux and the third order TVD Runge-Kutta method. Numerical results suggest that the new scheme achieves a uniformly high order accuracy for smooth solutions and produces non-oscillatory profiles for discontinuities. This is especially so for long time evolution problems. The scheme combines the simplicity of the central schemes and accuracy of the upwind schemes. The advantages of the new scheme will be fully realized when solving various examples.  相似文献   

2.
通过在单元交界面处进行高阶WENO重构,得到了一种求解双曲型守恒律方程的WENO型熵相容格式。用该格式对一维Burgers方程和Euler方程进行数值模拟,结果表明,该格式具有高精度、基本无振荡性等特点。  相似文献   

3.
A third-order numerical scheme is presented to give approximate solutions to multi-dimensional hyperbolic conservation laws only using modified coefficients of an essentially non-oscillatory (MCENO) scheme without increasing the base points during construction of the scheme. The construction process shows that the modified coefficient approach preserves favourable properties inherent in the original essentially nonoscillatory (ENO) scheme for its essential non-oscillation, total variation bounded (TVB), etc. The new scheme improves accuracy by one order compared to the original one. The proposed MCENO scheme is applied to simulate two-dimensional Rayleigh-Taylor (RT) instability with densities 1:3 and 1:100, and solve the Lax shock-wave tube numerically. The ratio of CPU time used to implement MCENO, the .third-order ENO and fifth-order weighed ENO (WENO) schemes is 0.62:1:2.19. This indicates that MCENO improves accuracy in smooth regions and has higher accuracy and better efficiency compared to the original ENO scheme.  相似文献   

4.
This paper presents a new higher‐order bounded scheme, weighted‐average coefficient ensuring boundedness (WACEB), for approximating the convective fluxes in solving transport equations with the finite volume difference method (FVDM). The weighted‐average formulation is used for interpolating the variables at cell faces and the weighted‐average coefficient is determined from normalized variable formulation and total variation diminishing (TVD) constraints to ensure the boundedness of solution. The new scheme is tested by solving three problems: (1) a pure convection of a box‐shaped step profile in an oblique velocity field, (2) a sudden expansion of an oblique velocity field in a cavity, and (3) a laminar flow over a fence. The results obtained by the present WACEB are compared with the UPWIND and the QUICK schemes and it is shown that this scheme has at least second‐order accuracy, while ensuring boundedness of solutions. Moreover, it is demonstrated that this scheme produces results that better agree with the experimental data in comparison with other schemes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
In recent years, three higher‐order (HO) bounded differencing schemes, namely AVLSMART, CUBISTA and HOAB that were derived by adopting the normalized variable formulation (NVF), have been proposed. In this paper, a comparative study is performed on these schemes to assess their numerical accuracy, computational cost as well as iterative convergence property. All the schemes are formulated on the basis of a new dual‐formulation in order to facilitate their implementations on unstructured meshes. Based on the proposed dual‐formulation, the net effective blending factor (NEBF) of a high‐resolution (HR) scheme can now be measured and its relevance on the accuracy and computational cost of a HR scheme is revealed on three test problems: (1) advection of a scalar step‐profile; (2) 2D transonic flow past a circular arc bump; and (3) 3D lid‐driven incompressible cavity flow. Both density‐based and pressure‐based methods are used for the computations of compressible and incompressible flow, respectively. Computed results show that all the schemes produce solutions which are nearly as accurate as the third‐order QUICK scheme; however, without the unphysical oscillations which are commonly inherited from the HO linear differencing scheme. Generally, it is shown that at higher value of NEBF, a HR scheme can attain better accuracy at the expense of computational cost. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, an original second‐order upwind scheme for convection terms is described and implemented in the context of a Control‐Volume Finite‐Element Method (CVFEM). The proposed scheme is a second‐order extension of the first‐order MAss‐Weighted upwind (MAW) scheme proposed by Saabas and Baliga (Numer. Heat Transfer 1994; 26B :381–407). The proposed second‐order scheme inherits the well‐known stability characteristics of the MAW scheme, but exhibits less artificial viscosity and ensures much higher accuracy. Consequently, and in contrast with nearly all second‐order upwind schemes available in the literature, the proposed second‐order MAW scheme does not need limiters. Some test cases including two pure convection problems, the driven cavity and steady and unsteady flows over a circular cylinder, have been undertaken successfully to validate the new scheme. The verification tests show that the proposed scheme exhibits a low level of artificial viscosity in the pure convection problems; exhibits second‐order accuracy for the driven cavity; gives accurate reattachment lengths for low‐Reynolds steady flow over a circular cylinder; and gives constant‐amplitude vortex shedding for the case of high‐Reynolds unsteady flow over a circular cylinder. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
To address accuracy issues for direct numerical simulation, a hybrid scheme based on the weighted compact scheme (WCS) and weighted essentially non-oscillatory (WENO) scheme is developed. The new hybrid method incorporates the advantages of both schemes. Time integration is performed using the fourth-order total variation diminishing Runge–Kutta method with a characteristic filter. The accuracy of the scheme is assessed using several benchmark problems. Results show that the proposed scheme produces a more accurate solution for problems involving shocks and discontinuities in comparison with the traditional shock-capturing methods.  相似文献   

8.
高速流场的数值模拟中, 既要保证对小尺度结构的高保真分辨, 又要实现对激波稳定、无振荡地捕捉.当前工程中广泛应用的高精度数值格式虽然都能一定程度地满足上述两种要求, 但仍与理想目标存在较大差距.例如, 模拟雷诺应力模型等小尺度问题时, 高精度格式在间断解附近易产生数值振荡.基于高精度格式所存在的上述问题, 本文引入去尺度函数, 探索了一种更加简单稳定的非线性权重构造方法, 并将其应用于7阶精度加权紧致非线性格式WCNS, 提出了一种尺度无关的7阶WCNS格式.该格式的性能与灵敏度参数和尺度因子的选择无关, 并且在小尺度下仍可以有效捕捉流场激波.同时, 该格式在间断处具有基本无振荡性质, 且在任意尺度函数下保持尺度无关, 并且在极值点处也能保持最优精度.本文还推导了7阶D权函数的形式.最后, 在一维线性对流方程中验证了新格式在流场光滑区能够达到设计精度, 并通过一系列数值实验证明了尺度无关的7阶WCNS格式在激波捕捉能力上具有良好表现, 为WCNS格式改进和解决可压缩湍流等非线性问题提供了一种新途径.   相似文献   

9.
An efficient high-order numerical method for supersonic reactive flows is proposed in this article. The reactive source term and convection term are solved separately by splitting scheme. In the reaction step, an adaptive time-step method is presented, which can improve the efficiency greatly. In the convection step, a third-order accurate weighted essentially non-oscillatory (WENO) method is adopted to reconstruct the solution in the unstructured grids. Numerical results show that our new method can capture the correct propagation speed of the detonation wave exactly even in coarse grids, while high order accuracy can be achieved in the smooth region. In addition, the proposed adaptive splitting method can reduce the computational cost greatly compared with the traditional splitting method.  相似文献   

10.
A bounded upwinding scheme for numerical solution of hyperbolic conservation laws and Navier–Stokes equations is presented. The scheme is based on convection boundedness criterion and total variation diminishing stability criteria and developed by employing continuously differentiable functions. The accuracy of the scheme is verified by assessing the error and observed convergence rate on 1‐D benchmark test cases. A comparative study between the new scheme and conventional total variation diminishing/convection boundedness criterion‐based upwind schemes to solve standard nonlinear hyperbolic conservation laws is also accomplished. The scheme is then examined in the simulation of Newtonian and non‐Newtonian fluid flows of increasing complexity; a satisfactory agreement has been observed in terms of the overall behavior. Finally, the scheme is used to study the hydrodynamics of a gas‐solid flow in a bubbling fluidized bed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
数值摄动算法及其CFD格式   总被引:2,自引:1,他引:1  
高智 《力学进展》2010,40(6):607-633
作者提出的数值摄动算法把流体动力学效应耦合进NS方程组和对流扩散(CD)方程离散的数学基本格式(MBS),特别是耦合进最简单的MBS即一阶迎风和二阶中心格式之中,由此构建成一系列新格式,称呼方便和强调耦合流体动力学起见,称它们为流体力学基本格式(FMBS)。构建FMBS的主要步骤是把MBS中的通量摄动重构为步长的幂级数,利用空间分裂和导出的高阶流体动力学关系式,把结点变量展开成Taylor级数,通过消除重构格式修正微分方程的截断误差诸项求出幂级数的待定系数,由此获得非线性FMBS。FMBS的公式是MBS与 (及 )之简单多项式的乘积, 和 分别是网格Reynolds数和网格CFL数。FMBS和MBS使用相同结点,简单性彼此相当,但FMBS精度高稳定范围大,例如FMBS包含了许多绝对稳定和绝对正型、高阶迎风和中心有限差分(FD)格式和有限体积(FV)格式,这些格式对网格Reynolds数的任意值均为不振荡格式。可见对不振荡CFD格式的构建,数值摄动算法提供了不同于调节数值耗散等常见的人为构建方法,而利用流体力学自身关系以及把迎风机制通过上、下游摄动重构引入中心MBS的解析构建方法,FMBS除了直接应用于流体计算外;对于通过调节数值耗散、色散和数值群速度特性重构高分辨率格式的研究,最简单FMBS提供了比最简单MBS更精确、但同样简单的基础和起步格式。FMBS用于计算不可压缩流,可压缩流,液滴萃取传质,微通道两相流等,均获得良好数值结果或与已有Benchmark解一致的数值结果。已有文献称数值摄动算法为新型高精度格式和高的算法和高的格式;本文FMBS比数值摄动格式的称呼可更好反映FMBS的物理内容。文中也讨论了值得进一步研究的一些课题,该法亦可用于其它一些数学物理方程(例如,简化Boltzmann方程、磁流体方程、KdV-Burgers方程等)MBS耦合物理动力学效应的重构。   相似文献   

12.
In this paper we construct an upwind compact finite difference scheme with group velocity control for better simulation of compressible flow fields. Compared with traditional difference schemes, compact schemes have higher accuracy for the same stencil width. By means of the characteristic analysis of the operators, the group velocity of wave packets will be controlled to suppress the non‐physical oscillations in numerical solutions. In numerical simulation of the 3D compressible flow fields the third‐order accurate upwind compact operator is used to approximate the derivatives in the convection terms of the compressible N–S equations, the traditional finite difference scheme is used to approximate the viscous terms. Numerical solutions indicate that the method is satisfactory. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
This paper carries out systematical investigations on the performance of several typical shock-capturing schemes for the discontinuous Galerkin (DG) method, including the total variation bounded (TVB) limiter and three artificial diffusivity schemes (the basis function-based (BF) scheme, the face residual-based (FR) scheme, and the element residual-based (ER) scheme). Shock-dominated flows (the Sod problem, the Shu- Osher problem, the double Mach reflection problem, and the transonic NACA0012 flow) are considered, addressing the issues of accuracy, non-oscillatory property, dependence on user-specified constants, resolution of discontinuities, and capability for steady solutions. Numerical results indicate that the TVB limiter is more efficient and robust, while the artificial diffusivity schemes are able to preserve small-scale flow structures better. In high order cases, the artificial diffusivity schemes have demonstrated superior performance over the TVB limiter.  相似文献   

14.
A slope modification method is proposed for non-oscillatory schemes based on the Lax-Friedrich solver. The modified scheme is proved to be total-variation-diminishing (TVD) and second-order accurate. Application of the scheme to the shallow water equations produces sharp profiles for shocks and achieves high accuracy in the smooth regions of the solution.  相似文献   

15.
加权型紧致格式与加权本质无波动格式的比较   总被引:3,自引:3,他引:0  
张树海 《力学学报》2016,48(2):336-347
线性紧致格式和加权本质无波动格式是两种典型的高阶精度数值格式,它们各有优缺点.线性紧致格式在具有高阶精度的同时,格式的分辨率也比较高,耗散低,是计算多尺度流场结构的较好格式,但是不能计算具有强激波的流场.加权本质无波动格式是一种高阶精度捕捉激波格式,鲁棒性好,但耗散比较高,分辨率也不理想.近年来,在莱勒的线性紧致格式基础上,采用加权本质无波动格式捕捉激波思想,发展了一系列加权型紧致格式.本文较全面地比较了加权型紧致格式和加权本质无波动格式,包括构造方法、鲁棒性、分辨率、耗散特性、收敛特性以及并行计算效率.结果表明,现有的加权型紧致格式基本保持了加权本质无波动格式的性质,对于气动力等宏观量的计算,比加权本质无波动格式没有明显的优势.   相似文献   

16.
为更准确捕捉复杂流场的流动细节,通过对WENO格式的光滑因子进行改进,发展了一种新的五阶WENO格式。对三阶ENO格式进行加权可以得到五阶WENO格式,但是不同的加权处理,WENO格式在极值处保持加权基本无振荡的效果不同,本文构造了二阶精度的局部光滑因子,及不含一阶二阶导数的高阶全局光滑因子,从而实现WENO格式在极值处有五阶精度。基于改进五阶WENO格式,对一维对流方程、一维和二维可压缩无粘问题进行算例验证,并与传统WENO-JS格式和WENO-Z格式进行比较。计算结果表明,改进五阶WENO格式有较高的精度和收敛速度,有较低的数值耗散,能有效捕捉间断、激波和涡等复杂流动。  相似文献   

17.
The steady, incompressible Navier–Stokes (N–S) equations are discretized using a cell vertex, finite volume method. Quadrilateral and hexahedral meshes are used to represent two- and three-dimensional geometries respectively. The dependent variables include the Cartesian components of velocity and pressure. Advective fluxes are calculated using bounded, high-resolution schemes with a deferred correction procedure to maintain a compact stencil. This treatment insures bounded, non-oscillatory solutions while maintaining low numerical diffusion. The mass and momentum equations are solved with the projection method on a non-staggered grid. The coupling of the pressure and velocity fields is achieved using the Rhie and Chow interpolation scheme modified to provide solutions independent of time steps or relaxation factors. An algebraic multigrid solver is used for the solution of the implicit, linearized equations. A number of test cases are anlaysed and presented. The standard benchmark cases include a lid-driven cavity, flow through a gradual expansion and laminar flow in a three-dimensional curved duct. Predictions are compared with data, results of other workers and with predictions from a structured, cell-centred, control volume algorithm whenever applicable. Sensitivity of results to the advection differencing scheme is investigated by applying a number of higher-order flux limiters: the MINMOD, MUSCL, OSHER, CLAM and SMART schemes. As expected, studies indicate that higher-order schemes largely mitigate the diffusion effects of first-order schemes but also shown no clear preference among the higher-order schemes themselves with respect to accuracy. The effect of the deferred correction procedure on global convergence is discussed.  相似文献   

18.
A novel class of weighted essentially nonoscillatory (WENO) schemes based on Hermite polynomials,termed as HWENO schemes,is developed and applied as limiters for high order discontinuous Galerkin (DG) method on triangular grids.The developed HWENO methodology utilizes high-order derivative information to keep WENO reconstruction stencils in the von Neumann neighborhood.A simple and efficient technique is also proposed to enhance the smoothness of the existing stencils,making higher-order scheme stable and simplifying the reconstruction process at the same time.The resulting HWENO-based limiters are as compact as the underlying DG schemes and therefore easy to implement.Numerical results for a wide range of flow conditions demonstrate that for DG schemes of up to fourth order of accuracy,the designed HWENO limiters can simultaneously obtain uniform high order accuracy and sharp,essentially non-oscillatory shock transition.  相似文献   

19.
Using the upstream polynomial approximation a series of accurate two‐dimensional explicit numerical schemes is developed for the solution of the convection–diffusion equation. A third‐order polynomial approximation (TOP) of the convection term and a consistent second‐order approximation of the diffusion term are combined in a single‐step flux‐difference algorithm. Stability analysis confirms that the TOP‐12 scheme satisfies the CFL condition for two dimensions. Using smaller and narrower flux stencils compared to algorithms of similar accuracy, the TOP‐12 scheme is more efficient in terms of computations per single node. Numerical tests and comparison with other well‐known algorithms show a high performance of the developed schemes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
The implementation of the multigrid method into the SIMPLE algorithm presents interesting aspects concerning the mass fluxes conservation on coarser grids, the k–ε turbulence model and the higher‐order discretization schemes. Higher‐order discretization schemes for the convection terms are increasingly used in order to guarantee accuracy in demanding engineering applications. However, when used in single‐grid algorithms, their convergence is considerably slower compared with the first‐order schemes. Unbounded higher‐order schemes offer maximum accuracy, but quite often they do not converge due to their oscillatory behaviour. This paper demonstrates the dual function of the multigrid method: reduction of CPU time and stabilization of the iterating procedure, making it possible to perform computations with the third‐order accurate QUICK scheme in all cases. The method is applied to the calculation of two‐ and three‐dimensional flows with or without turbulence modelling. The results show that the convergence rate of the present algorithm does not deteriorate when QUICK is used and that, if applied on complex engineering cases, large gains in computational time can be achieved. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号