首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of the oxidation of aspirin (ASP) by bromamine-T (BAT), N-bromosuccinimide (NBS), and N-bromophthalimide (NBP) has been studied in aqueous perchloric acid at 303 K. The oxidation reaction follows identical kinetics with first-order in [oxidant], fractional-order in [ASP], and inverse fractional-order in [H+]. Under identical experimental conditions the extent of oxidation with different oxidizing agents is in the order: NBS>BAT>NBP. The rate decreased with decreasing dielectric constant of the medium. The variation of ionic strength and the addition of the reaction products and halide ions had no significant effect on the reaction rate. The solvent isotope effect was studied using D2O. Kinetic parameters were evaluated by studying the reaction at different temperatures. The reaction products were identified by GC–MS. The proposed reaction mechanism and the derived rate law are consistent with the observed kinetic data. Formation and decomposition constants for ASP-oxidant complexes have been evaluated. Decarboxylation, bromination, and loss of acetic acid gave 2,4,6-tribromophenol. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet: 30: 407–414, 1998  相似文献   

2.
Tartaric acid oxidation by vanadium(V) in sulfuric acid medium was investigated spectrophotometrically at 760 nm and 30°C by appearance of the vanadium(IV), as vanadyl. The reaction rate was determined under pseudo-first-order conditions with an excess of hydroxyacid over the oxidant concentration. The oxidation showed a first-order dependence with respect to vanadium(V) concentration and fractional orders with respect to tartaric acid and sulfuric acid concentrations, with no control and with constant ionic strength. The reaction rate is enhanced by an increase of ionic strength, and slightly reduced by a decrease of the dielectric constant of the medium. The activation parameters were calculated based on the rate constants determined in the 293 to 313 K interval. The proposed oxidation mechanisms and the derived rate laws are consistent with the experimental rate laws. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet: 30: 55–61, 1998.  相似文献   

3.
The kinetics of oxidation of Isoniazid (INH) by sodium N‐haloarenesulfonamidates, chloramine‐T (CAT), bromamine‐T (BAT), chloramine‐B (CAB), and bromamine‐B (BAB), has been studied in alkaline medium at 303 K. The oxidation reaction follows identical kinetics with a first‐order dependence on each [oxidant] and [INH] and an inverse fractional‐order on [OH−:]. Addition of the reaction product (p‐toluenesulfonamide or benzenesulfonamide) had no significant effect on the reaction rate. Variation of ionic strength and addition of halide ions have no influence on the rate. There is a negative effect of dielectric constant of the solvent. Studies of solvent isotope effects using D2O showed a retardation of rate in the heavier medium. The reaction was studied at different temperatures, and activation parameters have been computed from the Arrhenius and Eyring plots. Isonicotinic acid was identified as the oxidation product by GC‐MS. A two‐pathway mechanism is pro‐posed in which RNHX and the anion RNX interact with the substrate in the rate‐limiting steps. The mechanism proposed and the derived rate laws are consistent with the observed kinetics. The rate of oxidation of INH increases in the order: BAT > BAB > CAT > CAB. This effect is mainly due to electronic factors. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 221–230, 2000  相似文献   

4.
The kinetics of oxidation of DL-Aspartic acid (Asp) by N-bromophthalimide (NBP) was studied in the presence of sodium dodecyl sulfate (SDS) in acidic medium at 308 K. The rate of reaction was found to have first-order dependence on [NBP], fractional order dependence on [Asp] and inverse fractional order dependence on [H+]. The addition of reduced product of the oxidant, that is, [Phthalimide] has decreased the rate of reaction. The rate of reaction increased with increase in inorganic salts concentration, whereas a change in [Cl?], ionic strength of the medium and [Hg(OAc)2] had no effect on the oxidation velocity. The rate of reaction decreased with a decrease in dielectric constant of the medium. COOH-CH2-CN was identified as the main oxidation product of the reactions. The various activation parameters have been computed. A suitable reaction mechanism consistent with the experimental findings has been proposed. The micelle-binding constant has been calculated.  相似文献   

5.
The kinetics of oxidation of DL-serine (Ser) by N-bromophthalimide (NBP) was studied in the presence of an anionic surfactant, sodium dodecyl sulfate, in acidic medium at 308 K. The rate of reaction was found to have first-order dependence on [NBP], fractional order dependence on [Ser] and inverse fractional order dependence on [H+]. The addition of reduced product of the oxidant [Phthalimide] and [Hg(OAc)2] has no effect on the rate of reaction. The change in ionic strength of the medium had no effect on oxidation velocity. The rate of reaction increased with increasing [Br?] and decreased with increasing [Cl?]. The rate of reaction decreased with decrease in dielectric constant of the medium. OHCH2CN was identified as the main oxidation product of the reactions. The various activation parameters have been computed. A suitable mechanism consistent with the experimental findings has been proposed. The micelle-binding constant has been calculated.  相似文献   

6.
A kinetic study of oxidation of 2‐phenylethylamine (PEA), a bioactive compound, with potent oxidant, N‐bromosuccinimide (NBS) has been carried out in HCl and NaOH media at 313 K. The experimental rate laws obtained are: ‐d [NBS] /dt = k[NBS][PEA][H+] in hydrochloric acid medium and ‐d [NBS]/dt = k[NBS][PEA]x[OH?]y in alkaline medium where x and y are less than unity. Accelerating effect of [Cl?], and retardation of the added succinimide on the reaction rate have been observed in acid medium. Variation of ionic strength of the medium shows negligible effect on rate of reaction in both media. Decrease in dielectric permittivity of the medium decreased the rate in both media. The stoichiometry of the reaction was found to be 1:1 in acid medium and 1:2 in the case of alkaline medium. The oxidation products of PEA were identified as the corresponding aldehyde and nitrile in acid and alkaline medium, respectively. The reactions were studied at different temperatures and the activation parameters have been evaluated. The reaction constants involved in the proposed mechanisms were computed. The reaction was found to be faster in alkaline medium in comparison with the acid medium, which is attributed to the involvement of different oxidizing species. The proposed mechanisms and the derived rate laws are consistent with the observed experimental results.  相似文献   

7.
Kinetic investigations of oxidation of dextrose by N-bromophthalimide (NBP) in acidic medium in the presence of mercuric(II) acetate as a scavenger have been studied. In both the absence and presence of surfactants, the oxidation kinetics of dextrose by NBP shows a first-order dependence on NBP, fractional order on dextrose, and negative fractional order dependence on sulfuric acid. The determined stoichiometric ratio was 1:1 (dextrose:NBP). The variation of Hg(OAC)2 and phthalimide (reaction product) have an insignificant effect on reaction rate. Effects of surfactants, added acrylonitrile, added salts, and solvent composition variation have been studied. Activation parameters for the reaction have been evaluated from Arrhenius plot by studying the reaction at different temperature. The rate law has been derived on the basis of obtained data. A plausible mechanism has been proposed from the results of kinetic studies, reaction stoichiometry and product analysis. The role of anionic and non-ionic micelle was best explained by the Berezin’s model.  相似文献   

8.
A detailed study of kinetics is required to predict the susceptibility of amino acid residues towards metal-catalyzed oxidation. The effect of quinolinium dichromate on the oxidation of a set of amino acid residues with different hydrophobicity in HClO4 medium at 25 °C has been fairly studied. The kinetics of the reaction was followed spectrophotometrically at λmax = 440 nm. The reaction has unit dependence on each of the substrates, quinolinum dichromate and acid concentrations. The effect of dielectric constant of the medium on the rate was studied. The induced polymerization of acrylonitrile was observed. The oxidation products were isolated and characterized. Dependence of reaction rate on temperature has been studied and activation parameters were computed. A mechanism consistent with the observed results has been proposed. Of the four amino acid residues, proline is oxidized at a faster rate than all other amino acids. This may be due to the hydrophobic induced oxidation. Therefore, the overall order of amino acid sensitivity to oxidation was found to be Pro > Thr > Ser > Lys.  相似文献   

9.
The kinetics of oxidation of aspirin (ASP) by permanganate in alkaline medium at a constant ionic strength of 0.06 mol dm−3 was studied spectrophotometrically using a rapid kinetic accessory. The reaction between permanganate and aspirin in alkaline medium exhibited 1:4 stoichiometry (aspirin: permanganate). The reaction was of first order in [permanganate ion] and had less than unit order in both [ASP] and [alkali]. A decrease in the dielectric constant of the medium decreased the rate of reaction. The effect of added products and ionic strength of the reaction medium have been investigated. The oxidation reaction in alkaline medium has been shown to proceed via a permanganate–aspirin complex, which decomposes slowly in a rate determining step followed by other fast steps to give the products. The main products were identified by spot test and spectroscopic studies. A suitable mechanism is proposed. The reaction constants involved in the different steps of the mechanism were derived. The activation parameters with respect to the slow step of the mechanism were computed and discussed and thermodynamic quantities were also determined.  相似文献   

10.
The kinetics of oxidation of ethanolamines, monoethanolamine (MEA), diethanolamine (DEA), and triethanolamine (TEA), by sodium N‐bromobenzenesulfonamide or bromamine‐B (BAB) in alkaline buffer medium (pH 8.7–12.2) has been studied at 40°C. The three reactions follow identical kinetics with first‐order in [oxidant] and fractional‐order each in [substrate] and [OH?]. Under comparable experimental conditions, the rate of oxidation increases in the order: DEA > TEA > MEA. The added reaction product, benzenesulfonamide, retards the reaction rate. The addition of halide ions and the variation of ionic strength of the medium have no significant effect on the rate. The dielectric effect is negative. The solvent isotope effect k′(H2O)/k′(D2O) ≈ 0.92. Activation parameters for the composite reaction and for the rate‐limiting step were computed from the Eyring plots. Michaelis‐Menten type of kinetics is observed. The formation and decomposition constants of ethanolamine‐BAB complexes are evaluated. An isokinetic relationship is observed with β = 430 K indicating that enthalpy factors control the rate. For each substrate, a mechanism consistent with the kinetic data has been proposed. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 480–490, 2001  相似文献   

11.
Oxidation kinetics of benzaldehyde and some of its ortho- and para-monosubstituted derivatives have been studied using cetylpicolinium dichromates, a class of novel phase transfer oxidants, in dichloromethane medium. The rate of reaction is first order with respect to oxidant and fractional order with respect to the substrates. The Michaelis–Menten type oxidation was observed with respect to the substrates. Benzaldehydes are found to be oxidized to their corresponding acids. The mechanism of oxidation reaction has been suggested based on the solvent isotope effect, Hammett plot, and thermodynamic study. The solvent isotope effect (kCHCl3/kCDCl3 = 1.57) indicates the involvement of hydrogen exchange with the medium during oxidation reactions. A strong influence of specific solute–solvent interactions on the rate of the reaction is observed. Both the electron-withdrawing and electron-releasing substituents on the substrates accelerate the rate of reaction.  相似文献   

12.
The reaction kinetics for the oxidation of l ‐histidine by permanganate ions have been investigated spectrophotometrically in sulfuric acid medium at constant ionic strength and temperature. The order with respect to permanganate ions was found to be unity and second in acid concentration, whereas a fractional order is observed with respect to histidine. The reaction was observed to proceed through formation of a 1:1 intermediate complex between oxidant and substrate. The effect of the acid concentration suggests that the reaction is acid catalyzed. Increasing the ionic strength has no significant effect on the rate. The influence of temperature on the rate of reaction was studied. The presence of metal ion catalysts was found to accelerate the oxidation rate, and the order of effectiveness of the ions was Cu2+ > Ni2+ > Zn2+. The final oxidation products were identified as aldehyde (2‐imidazole acetaldehyde), ammonium ion, manganese(II), and carbon dioxide. Based on the kinetic results, a plausible reaction mechanism is proposed. The activation parameters were determined and discussed with respect to a slow reaction step.  相似文献   

13.
The oxidation of butane 2,3-, propane 1,2-, ethane diol and 2-methoxy ethanol in aqueous alkaline medium by Os(VIII) has been studied. The reaction is base catalyzed and shows first-order kinetics in Os(VIII), whereas the order is less than 1 in butane 2,3-diol [BD]. The rate of oxidation is BD > propane 1,2 > ethane diol ≈ 2-methoxy ethanol. The change in ionic strength has no effect on the rate of reaction. Activation parameters ΔE, PZ, and ΔS* have been evaluated.  相似文献   

14.
The kinetics of oxidation of four vicinal diols, four nonvicinal diols, and one of their monoethers by pyridinium bromochromate (PBC) have been studied in dimethyl sulfoxide. The main product of oxidation is the corresponding hydroxyaldehyde. The reaction is first-order with respect to each the diol and PBC. The reaction is acid-catalyzed and the acid dependence has the form: kobs=a+b[H+]. The oxidation of [1,1,2,2-2H4]ethanediol exhibited a primary kinetic isotope effect (kH/k D=6.70 at 298 K). The reaction has been studied in 19 organic solvents including dimethyl sulfoxide and the solvent effect has been analyzed using multiparametric equations. The temperature dependence of the kinetic isotope effect indicates the presence of a symmetrical transition state in the rate-determining step. A suitable mechanism has been proposed. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 285–290, 1998.  相似文献   

15.
The kinetics of oxidation of L-lysine by diperiodatocuprate (III) (DPC) in alkaline medium at a constant ionic strength of 0.15 mol/dm3 was studied spectrophotometrically. The reaction between DPC and L-lysine in an alkaline medium had a 1: 2 stoichiometry (L-lysine: DPC). The reaction was first order in [DPC] and less than first order in [L-lysine] and [alkali]. The addition of periodate had no effect on the rate of the reaction. The intervention of free radicals was observed in the reaction. The oxidation reaction in alkaline medium was shown to proceed via a DPC-L-lysine complex. The main products were identified by spot test and spectral studies. The reaction constants involved in different steps of the mechanism were calculated. The activation parameters with respect to the slow step of the mechanism were computed and discussed, and thermodynamic values were also determined. The article is published in the original.  相似文献   

16.
The kinetics of oxidation of L-Alanine (Ala) by N-bromophthalimide (NBP) was studied in the presence of an anionic surfactant, sodium dodecyl sulfate, in acidic medium at 308 K. The rate of reaction was found to have first-order dependence on [NBP], fractional order dependence on [Ala] and inverse fractional order dependence on [H+]. The addition of reduced product of the oxidant [Phthalimide] has decreased the rate of reaction. The rate of reaction increased with increase in inorganic salts concentration i.e., [Cl] and [Br], whereas a change in ionic strength of the medium and [Hg(OAc)2] had no effect on oxidation velocity. The rate of reaction decreased with a decrease in dielectric constant of the medium. CH3CN was identified as the main oxidation product of the reaction. The various activation parameters have been computed and suitable mechanism consistent with the experimental findings has also been proposed. The micelle-binding constant has been calculated. Published in Russian in Kinetika i Kataliz, 2009, Vol. 50, No. 3, pp. 386–396. The article is published in the original.  相似文献   

17.
Kinetics of oxidation of thiocarbohydrazide (TCH) in the free state and as its metal complex, and as a hydrazone by chloramine-T (CAT) in aqueous HClO4 medium, and by dichloramine-T (DCT) in 1:1 (v/v) water-methanol medium in the presence of HClO4 have been studied. Rates of oxidation of TCH in the free state and in metal complex by CAT were determined. The rate law for the oxidation of TCH at high [H+ ] and for complex oxidations were identical to that for CAT oxidations. The conversion of TCH into its hydrazone changed the order in [H+] from a positive to a negative value, probably signalling the change of reaction site. The rate law for oxidation under these conditions was determined. Addition of the reduced product of the oxidants had no effect on the rate of oxidations. Variation in ionic strength of the medium had little positive effect, while decrease in dielectric constant of the medium decreased the rate in both the oxidations. Oxidation processes generally follow a Michaelis-Menten type of mechanism. Constants of the rate limiting steps have been calculated at different temperatures and these constants have been used to calculate the activation parameters from the Arrhenius plots. The proposed mechanisms are supported by investigations with HOC1 under identical reaction conditions. Metal complexation of the substrate decreased the reactivity, while conversion of TCH into its hydrazone changed the rate dependence on [H+].  相似文献   

18.
The kinetics of ruthenium(III) catalyzed oxidation of atenolol by diperiodatocuprate(III) in aqueous alkaline medium at a constant ionic strength of I = 0.10 M has been studied spectrophotometrically at 27°C. The reaction between diperiodatocuprate(III) and atenolol in alkaline medium in presence of ruthenium(III) exhibits 2: 1 stoichiometry (atenolol: diperiodatocuprate(III)). The main products were identified by spot test, IR, NMR, and LC-MS. The reaction is of first order in DPC concentrations and has less than unit order in both ATN and alkali concentrations. The order in ruthenium(III) was unity. Intervention of free radicals was observed in the reaction. Increase in periodate concentration decreases the rate. The oxidation reaction in alkaline medium has been shown to proceed via a ruthenium(III)-atenolol complex, which reacts with monoperiodatocuprate(III) in a rate determining step followed by other fast steps to give the products. Probable mechanism is proposed and discussed. The activation parameters with respect to the slow step of the mechanism and thermodynamic quantities were determined and discussed.  相似文献   

19.
The kinetics of the oxidation of L-asparagine, (L-asp) by diperiodatonickelate(IV), (DPN) in aqueous alkaline medium at a constant ionic strength of 0.5 mol⋅dm−3, was studied spectrophotometrically. The reaction is first order in [DPN] and of fractional order in both [L-asp] and [alkali]. Addition of the products has no significant effect on the reaction rate. However, increasing the ionic strength or decreasing the dielectric constant of the medium increases the reaction rate. The oxidation process in alkaline medium is shown to proceed via two paths, one involving the interaction of L-asparagine with diperiodatonickelate(IV) ion in a slow step to yield the products, and the other path involving the interaction of alkali with the diperiodatonickelate(IV) ion to give nickel(II). Some reaction constants involved in the mechanism were determined, and calculated and observed rate constants are in excellent agreement. The activation parameters were computed for the slow step of the mechanism.  相似文献   

20.
Chloramphenicol (CAP) is an antibiotic drug having a wide spectrum of activity. The kinetics of oxidation of chloramphenicol by 1-chlorobenzotriazole (CBT) in HClO4 medium over the temperature range 293–323 K has been investigated. The reaction exhibits first-order kinetics with respect to [CBT]o and zero-order with respect to [CAP]o. The fractional-order dependence of rate on [H+] suggests complex formation between CBT and H+. It fails to induce polymerization of acrylonitrile under the experimental conditions employed. Activation parameters are evaluated. The observed solvent isotope effect indicates the absence of hydride transfer during oxidation. Effects of dielectric constant and ionic strength of the medium on the reaction rate have been studied. Oxidation products are identified. A suitable reaction scheme is proposed and an appropriate rate law is deduced to account for the observed kinetic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号