首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The knowledge of the channel bed topography is paramount in modeling the hydrodynamics of open channel flows. Indeed, flow models based on the Shallow Water Approximation require prior information on the channel bed topography to accurately capture the flow features in natural rivers, estuaries, and flood plains. We present here a numerical technique for reconstructing the channel bed topography from given free surface elevation data for steep open channel flows for which the zero-inertia shallow water approximation holds. In this context, the shallow water equations are modified by neglecting inertia terms while retaining the effects of the bed slope and friction terms. We show in this work that by algebraic manipulation, we can recast the governing equations into a single first-order partial differential equation which describes the inverse problem which consists in finding the bed topography from known free surface elevation data. Interestingly, the analysis shows that the inverse problem does not require the knowledge of the bed roughness. The forward problem is solved using MacCormack’s explicit numerical scheme by considering unsteady modified shallow water equations. However, the inverse problem is solved using the method of characteristics. The results of the inverse and the forward problem are successfully tested against each other on two different test cases.  相似文献   

2.
A modified lattice Boltzmann model is proposed to describe shallow water flows over complex topography. In the proposed model, the quadratic depth term is excluded from the equilibrium distribution functions (EDFs), and the hydrostatic pressure term is combined with the bed slope term to be treated as a part of the sourcing term in the lattice Boltzmann equation (LBE). Therefore, it is unnecessary to match the coefficients of the quadratic depth term in the EDFs with those of the bed slope term in the sourcing terms in the LBE. This would bring more flexibility to the treatment of the sourcing terms in the LBE. In order to recover the shallow water equations (SWEs), the basic constraints are redefined, and under these constraints, the coefficients of the EDFs are derived afterwards. Several benchmark problems are used to validate the proposed model, including stationary case, steady flows over a two‐dimensional bump and tidal wave flows over irregular bed elevation. The computed results are in excellent agreement with the results of the other numerical methods and the analytical solutions, indicating that the proposed model is capable of simulating shallow water flows over complex bathymetry. It also proves that the proposed model has potential to produce competitive solutions to shallow water flows over complex bed topography. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Numerical solutions of the shallow water equations can be used to reproduce flow hydrodynamics occurring in a wide range of regions. In hydraulic engineering, the objectives include the prediction of dam break wave propagation, fluvial floods and other catastrophic flooding phenomena, the modeling of estuarine and coastal circulations, and the design and optimization of hydraulic structures. In this paper, a well‐balanced explicit and semi‐implicit finite element scheme for shallow water equations over complex domains involving wetting and drying is proposed. The governing equations are discretized by a fractional finite element method using a two‐step Taylor–Galerkin scheme. First, the intermediate increment of conserved variable is obtained explicitly neglecting the pressure gradient term. This is then corrected for the effects of pressure once the pressure increment has been obtained from the Poisson equation. In order to maintain the ‘well‐balanced’ property, the pressure gradient term and bed slope terms are incorporated into the Poisson equation. Moreover, a local bed slope modification technique is employed in drying–wetting interface treatments. The proposed model is well validated against several theoretical benchmark tests. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
This paper is concerned with the propagation of nonlinear gravity waves over a thin horizontal plate submerged in water of shallow depth. An unsteady solution of the problem is obtained by use of the theory of directed fluid-sheets for the two-dimensional motion of an incompressible and inviscid fluid. Particular attention is paid to the calculation of the nonlinear wave-induced vertical and horizontal forces and overturning moment by solving the Level I Green–Naghdi equations. The theoretical formulation of the problem is given in this paper (Part I), while the results due to solitary and cnoidal waves, and comparisons with the available experimental data are given in a companion paper under the same title (Part II).  相似文献   

5.
The aim of this work is to develop a well‐balanced finite‐volume method for the accurate numerical solution of the equations governing suspended sediment and bed load transport in two‐dimensional shallow‐water flows. The modelling system consists of three coupled model components: (i) the shallow‐water equations for the hydrodynamical model; (ii) a transport equation for the dispersion of suspended sediments; and (iii) an Exner equation for the morphodynamics. These coupled models form a hyperbolic system of conservation laws with source terms. The proposed finite‐volume method consists of a predictor stage for the discretization of gradient terms and a corrector stage for the treatment of source terms. The gradient fluxes are discretized using a modified Roe's scheme using the sign of the Jacobian matrix in the coupled system. A well‐balanced discretization is used for the treatment of source terms. In this paper, we also employ an adaptive procedure in the finite‐volume method by monitoring the concentration of suspended sediments in the computational domain during its transport process. The method uses unstructured meshes and incorporates upwinded numerical fluxes and slope limiters to provide sharp resolution of steep sediment concentrations and bed load gradients that may form in the approximate solutions. Details are given on the implementation of the method, and numerical results are presented for two idealized test cases, which demonstrate the accuracy and robustness of the method and its applicability in predicting dam‐break flows over erodible sediment beds. The method is also applied to a sediment transport problem in the Nador lagoon.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Proper approximation of the force terms, especially the bed slope term, is of crucial importance to simulating shallow water flows in lattice Boltzmann (LB) models. However, there is little discussion on the schemes of adding force terms to LB models for shallow water equations (SWEs). In this study, we evaluate the performance of forcing schemes coupled with different LB models (LABSWE and MLBSWE) in simulating shallow water flows over complex topography and try to find out their intrinsic characteristics and applicability. Three cases are adopted for evaluation, including a stationary case, a one-dimensional tidal wave flow over an irregular bed, and a steady flow over a two-dimensional seamount. The simulating results are compared with analytical solutions or the results produced by the finite difference method. For LABSWE, all the forcing schemes, except for the weighting factor method, fail to produce accurate solutions for the test cases; this is probably due to the mismatch between the bed slope term in source terms and the quadratic depth term of the equilibrium distribution functions in these forcing schemes. For MLBSWE, all the forcing schemes are capable of simulating flows over the complex topography accurately; furthermore, those schemes taking into account the collision effect τ to eliminate the momentum induced by forces provide more accurate solutions with quicker convergence as the lattice size decreases. In this view, MLBSWE can bring more flexibility in treating the force terms and thus can be a better tool to simulate shallow water flows over complex topography in practical application.  相似文献   

7.
Numerical modeling of shallow water flows over discontinuous beds is presented. The flows are described with the shallow water equations and the equations are solved using the lattice Boltzmann method (LBM) with single relaxation time (Bhatnagar–Gross–Krook‐LBM (BGK‐LBM)) and the multiple relaxation time (MRT‐LBM). The weighted centered scheme for force term together with the bed height for a bed slope is described to improve simulation of flows over discontinuous bed. Furthermore, the resistance stress is added to include the local head loss caused by flow over a step. Four test cases, one‐dimensional tidal over regular bed and steps, dam‐break flows, and two‐dimensional shallow water flow over a square block, are considered to verify the present method. Agreements between predictions and analytical solutions are satisfactory. Furthermore, the performance and CPU cost time of BGK‐LBM and MRT‐LBM are compared and studied. The results have shown that the lattice Boltzmann method is simple and accurate for simulating shallow water flows over discontinuous beds. This demonstrates the capability and applicability of the lattice Boltzmann method in modeling shallow water flows on bed topography with a discontinuity in practical hydraulic engineering. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
通过孔隙率方法来描述挡水物对过水能力的影响建立了一维孔隙率浅水方程. 采用有限体积方法和Roe格式的近似Riemann解建立了孔隙率浅水方程的离散模式. 对底坡和孔隙率源项采用特性方向分解的方法进行处理,使模型精确满足C(Conservative)特性,增加了模型的稳定性. 通过算例模拟证明了模型可以对河道中的挡水物作用进行模拟,且计算结果表明模型具有和谐、稳定、分辨率高等优点.   相似文献   

9.
A Godunov-type upwind finite volume solver of the non-linear shallow water equations is described. The shallow water equations are expressed in a hyperbolic conservation law formulation for application to cases where the bed topography is spatially variable. Inviscid fluxes at cell interfaces are computed using Roe's approximate Riemann solver. Second-order accurate spatial calculations of the fluxes are achieved by enhancing the polynomial approximation of the gradients of conserved variables within each cell. Numerical oscillations are curbed by means of a non-linear slope limiter. Time integration is second-order accurate and implicit. The numerical model is based on dynamically adaptive unstructured triangular grids. Test cases include an oblique hydraulic jump, jet-forced flow in a flat-bottomed circular reservoir, wind-induced circulation in a circular basin of non-uniform bed topography and the collapse of a circular dam. The model is found to give accurate results in comparison with published analytical and alternative numerical solutions. Dynamic grid adaptation and the use of a second-order implicit time integration scheme are found to enhance the computational efficiency of the model.  相似文献   

10.
用离散速度方法计算浅水长波方程   总被引:1,自引:0,他引:1  
用离散速度法计算浅水波方程,将空气动力学方程和浅水波方程作了比较,用Nadiga提出的近平衡流动方法模拟浅水波方程的连续和间断解。计算了一维的溃坝波问题和Thacker提出的连续解问题,结果与精确解作了比较,并且计算了水流跃过障碍物的问题。  相似文献   

11.
In this paper, a smoothed particle hydrodynamics (SPH) numerical model for the shallow water equations (SWEs) with bed slope source term balancing is presented. The solution of the SWEs using SPH is attractive being a conservative, mesh‐free, automatically adaptive method without special treatment for wet‐dry interfaces. Recently, the capability of the SPH–SWEs numerical scheme with shock capturing and general boundary conditions has been used for predicting practical flooding problems. The balance between the bed slope source term and fluxes in shallow water models is desirable for reliable simulations of flooding over bathymetries where discontinuities are present and has received some attention in the framework of Finite Volume Eulerian models. The imbalance because of the source term resulting from the calculation of the the water depth is eradicated by means of a corrected mass, which is able to remove the error introduced by a bottom discontinuity. Two different discretizations of the momentum equation are presented herein: the first one is based on the variational formulation of the SWEs in order to obtain a fully conservative formulation, whereas the second one is obtained using a non‐conservative form of the free‐surface elevation gradient. In both formulations, a variable smoothing length is considered. Results are presented demonstrating the corrections preserve still water in the vicinity of either 1D or 2D bed discontinuities and provide close agreement with 1D analytical solutions for rapidly varying flows over step changes in the bed. The method is finally applied to 2D dam break flow over a square obstacle where the balanced formulation improves the agreement with experimental measurements of the free surface. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
We discuss the application of a finite volume method to morphodynamic models on unstructured triangular meshes. The model is based on coupling the shallow water equations for the hydrodynamics with a sediment transport equation for the morphodynamics. The finite volume method is formulated for the quasi‐steady approach and the coupled approach. In the first approach, the steady hydrodynamic state is calculated first and the corresponding water velocity is used in the sediment transport equation to be solved subsequently. The second approach solves the coupled hydrodynamics and sediment transport system within the same time step. The gradient fluxes are discretized using a modified Roe's scheme incorporating the sign of the Jacobian matrix in the morphodynamic system. A well‐balanced discretization is used for the treatment of source terms. We also describe an adaptive procedure in the finite volume method by monitoring the bed–load in the computational domain during its transport process. The method uses unstructured meshes, incorporates upwinded numerical fluxes and slope limiters to provide sharp resolution of steep bed gradients that may form in the approximate solution. Numerical results are shown for a test problem in the evolution of an initially hump‐shaped bed in a squared channel. For the considered morphodynamical regimes, the obtained results point out that the coupled approach performs better than the quasi‐steady approach only when the bed–load rapidly interacts with the hydrodynamics. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
A two‐dimensional model for the simulation of solute transport by convection and diffusion into shallow water flow over variable bottom is presented. It is based on a finite volume method over triangular unstructured grids. A first order upwind technique is applied to solve the flux terms in both the flow and solute equations and the bed slope source terms and a centred discretization is applied to the diffusion and friction terms. The convenience of considering the fully coupled system of equations is indicated and the methodology is well explained. Three options are suggested and compared in order to deal with the diffusion terms. Some comparisons are carried out in order to show the performance in terms of accuracy and computational effort of the different options. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
用格子Boltzmann方程模拟浅水波问题   总被引:5,自引:0,他引:5  
提出了用格子Boltzmann方程(LBE)模拟浅水波问题的方法.通过无粘气体运动方程与浅水波方程的比较,确定了LBE方法中平衡态的形式,使宏观方程与浅水波方程一致.计算了二维浅水波的一个问题,数值结果与精确解做了比较.  相似文献   

15.
We apply the lattice Boltzmann (LB) method for solving the shallow water equations with source terms such as the bed slope and bed friction. Our aim is to use a simple and accurate representation of the source terms in order to simulate practical shallow water flows without relying on upwind discretization or Riemann problem solvers. We validate the algorithm on problems where analytical solutions are available. The numerical results are in good agreement with analytical solutions. Furthermore, we test the method on a practical problem by simulating mean flow in the Strait of Gibraltar. The main focus is to examine the performance of the LB method for complex geometries with irregular bathymetry. The results demonstrate its ability to capture the main flow features. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
The finite element method is developed to solve the problem of wave run-up on a mild, plane slope. A novel approach to implementing a deforming mesh of one-dimensional, three-node, isoparametric elements is described and demonstrated. The discrete time interval (DTI), arbitrary Lagrangian–Eulerian (ALE) and space–time element (STE) methods are used to solve the unsteady one-dimensional shallow water wave equations. The boundary condition required is simply the seaward water surface elevation, and although the method has only been tested for monochromatic waves, it should be equally valid for any sea state which can be described as a water surface elevation as a function of time. All three solution methods are shown to given good results. Time histories of the terms of the governing equations are calculated and used to demonstrate how the ALE and STE methods account for mesh deformation. The model could be extended to two dimensions, which would have practical application to the run-up of obliquely incident waves. © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
This paper is an experimental and numerical study about propagation and reflection of waves originated by natural hazards such as sea bottom movements, hill slope sliding and avalanches. One‐dimensional flume experiments were conducted to study the characteristics of such waves. The results of the experimental study can be used by other researchers to verify their numerical models. A finite volume numerical model, which solves the shallow water equations, was also verified using our own experimental results. In order to deal with reflection on sloping surfaces and overtopping walls, a new condition for the treatment of the coastline is suggested. The numerical simulation of wave generation is also studied considering the bed movement. A boundary condition is proposed for this case. Those situations when the shallow water equations are valid to simulate this type of phenomena have been studied, as well as their limitations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
In this work a new finite element based Method of Relaxed Streamline Upwinding is proposed to solve hyperbolic conservation laws. Formulation of the proposed scheme is based on relaxation system which replaces hyperbolic conservation laws by semi-linear system with stiff source term also called as relaxation term. The advantage of the semi-linear system is that the nonlinearity in the convection term is pushed towards the source term on right hand side which can be handled with ease. Six symmetric discrete velocity models are introduced in two dimensions which symmetrically spread foot of the characteristics in all four quadrants thereby taking information symmetrically from all directions. Proposed scheme gives exact diffusion vectors which are very simple. Moreover, the formulation is easily extendable from scalar to vector conservation laws. Various test cases are solved for Burgers equation (with convex and non-convex flux functions), Euler equations and shallow water equations in one and two dimensions which demonstrate the robustness and accuracy of the proposed scheme. New test cases are proposed for Burgers equation, Euler and shallow water equations. Exact solution is given for two-dimensional Burgers test case which involves normal discontinuity and series of oblique discontinuities. Error analysis of the proposed scheme shows optimal convergence rate. Moreover, spectral stability analysis gives implicit expression of critical time step.  相似文献   

19.
The observation that the hyperbolic shallow water equations and the Green–Naghdi equations in Lagrangian coordinates have the form of an Euler–Lagrange equation with a natural Lagrangian allows us to apply Noether's theorem for constructing conservation laws for these equations. In this study the complete group analysis of these equations is given: admitted Lie groups of point and contact transformations, classification of the point symmetries and all invariant solutions are studied. For the hyperbolic shallow water equations new conservation laws which have no analog in Eulerian coordinates are obtained. Using Noether's theorem a new conservation law of the Green–Naghdi equations is found. The dependence of solutions on the parameter is illustrated by self-similar solutions which are invariant solutions of both models.  相似文献   

20.
This paper describes a numerical solver of well‐balanced, 2D depth‐averaged shallow water‐sediment equations. The equations permit variable horizontal fluid density and are designed to model water‐sediment flow over a mobile bed. A Godunov‐type, Harten–Lax–van Leer contact (HLLC) finite volume scheme is used to solve the fully coupled system of hyperbolic conservation laws that describe flow hydrodynamics, suspended sediment transport, bedload transport and bed morphological change. Dependent variables are specially selected to handle the presence of the variable density property in the mathematical formulation. The model is verified against analytical and semi‐analytical solutions for bedload transport and suspended sediment transport, respectively. The well‐balanced property of the equations is verified for a variable‐density dam break flow over discontinuous bathymetry. Simulations of an idealised dam‐break flow over an erodible bed are in excellent agreement with previously published results, validating the ability of the model to capture the complex interaction between rapidly varying flow and an erodible bed and validating the eigenstructure of the system of variable‐density governing equations. Flow hydrodynamics and final bed topography of a laboratory‐based 2D partial dam breach over a mobile bed are satisfactorily reproduced by the numerical model. Comparison of the final bed topographies, computed for two distinct sediment transport methods, highlights the sensitivity of shallow water‐sediment models to the choice of closure relationships. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号