共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Javier Barajas 《Discrete Mathematics》2008,308(8):1355-1365
The distance graph G(D) has the set of integers as vertices and two vertices are adjacent in G(D) if their difference is contained in the set D⊂Z. A conjecture of Zhu states that if the chromatic number of G(D) achieves its maximum value |D|+1 then the graph has a triangle. The conjecture is proven to be true if |D|?3. We prove that the chromatic number of a distance graph with D={a,b,c,d} is five only if either D={1,2,3,4k} or D={a,b,a+b,b-a}. This confirms a stronger version of Zhu's conjecture for |D|=4, namely, if the chromatic number achieves its maximum value then the graph contains K4. 相似文献
4.
不包含2K_2的图是指不包含一对独立边作为导出子图的图.Kriesell证明了所有4连通的无爪图的线图是哈密顿连通的.本文证明了如果图G不包含2K_2并且不同构与K_2,P_3和双星图,那么线图L(G)是哈密顿图,进一步应用由Ryjá(?)ek引入的闭包的概念,给出了直径不超过2的2连通无爪图是哈密顿图这个定理的新的证明方法. 相似文献
5.
Amin Coja-Oghlan Konstantinos Panagiotou Angelika Steger 《Journal of Combinatorial Theory, Series B》2008,98(5):980-993
In this paper we consider the classical Erdős–Rényi model of random graphs Gn,p. We show that for p=p(n)n−3/4−δ, for any fixed δ>0, the chromatic number χ(Gn,p) is a.a.s. ℓ, ℓ+1, or ℓ+2, where ℓ is the maximum integer satisfying 2(ℓ−1)log(ℓ−1)p(n−1). 相似文献
6.
Javier Barajas 《Discrete Mathematics》2009,309(18):5687-5696
Given a set D of a cyclic group C, we study the chromatic number of the circulant graph G(C,D) whose vertex set is C, and there is an edge ij whenever i−j∈D∪−D. For a fixed set D={a,b,c:a<b<c} of positive integers, we compute the chromatic number of circulant graphs G(ZN,D) for all N≥4bc. We also show that, if there is a total order of D such that the greatest common divisors of the initial segments form a decreasing sequence, then the chromatic number of G(Z,D) is at most 4. In particular, the chromatic number of a circulant graph on ZN with respect to a minimum generating set D is at most 4. The results are based on the study of the so-called regular chromatic number, an easier parameter to compute. The paper also surveys known results on the chromatic number of circulant graphs. 相似文献
7.
A packing-coloring of a graph is a partition of into sets such that for each the distance between any two distinct is at least . The packing chromatic number, , of a graph is the minimum such that has a packing -coloring. Sloper showed that there are -regular graphs with arbitrarily large packing chromatic number. The question whether the packing chromatic number of subcubic graphs is bounded appears in several papers. We answer this question in the negative. Moreover, we show that for every fixed and , almost every -vertex cubic graph of girth at least has the packing chromatic number greater than . 相似文献
8.
The distinguishing chromatic number of a graph , denoted , is defined as the minimum number of colors needed to properly color such that no non-trivial automorphism of fixes each color class of . In this paper, we consider random Cayley graphs defined over certain abelian groups with , and show that with probability at least , . 相似文献
9.
In this work we show that, for any fixed d, random d-regular graphs asymptotically almost surely can be coloured with k colours, where k is the smallest integer satisfying d<2(k−1)log(k−1). From previous lower bounds due to Molloy and Reed, this establishes the chromatic number to be asymptotically almost surely k−1 or k. If moreover d>(2k−3)log(k−1), then the value k−1 is discarded and thus the chromatic number is exactly determined. Hence we improve a recently announced result by Achlioptas and Moore in which the chromatic number was allowed to take the value k+1. Our proof applies the small subgraph conditioning method to the number of equitable k-colourings, where a colouring is equitable if the number of vertices of each colour is equal. 相似文献
10.
Van H. Vu 《Journal of Graph Theory》1999,31(3):201-226
It is well known that almost every graph in the random space G(n, p) has chromatic number of order O(np/log(np)), but it is not clear how we can recognize such graphs without eventually computing the chromatic numbers, which is NP‐hard. The first goal of this article is to show that the above‐mentioned upper bound on the chromatic number can be guaranteed by simple degree conditions, which are satisfied by G(n, p) almost surely for most values of p. It turns out that the same conditions imply a similar bound for the choice number of a graph. The proof implies a polynomial coloring algorithm for the case p is not too small. Our result has several applications. It can be used to determine the right order of magnitude of the choice number of random graphs and hypergraphs. It also leads to a general bound on the choice number of locally sparse graphs and to several interesting facts about finite fields. © 1999 John Wiley & Sons, Inc. J Graph Theory 31: 201–226, 1999 相似文献
11.
This paper gives a sufficient condition for a graph G to have its circular chromatic number equal to its chromatic number. By using this result, we prove that for any integer t ≥ 1, there exists an integer n such that for all . © 2003 Wiley Periodicals, Inc. J Graph Theory 44: 106–115, 2003 相似文献
12.
13.
The r‐acyclic edge chromatic number of a graph is defined to be the minimum number of colors required to produce an edge coloring of the graph such that adjacent edges receive different colors and every cycle C has at least min(|C|, r) colors. We show that (r ? 2)d is asymptotically almost surely (a.a.s.) an upper bound on the r‐acyclic edge chromatic number of a random d‐regular graph, for all constants r ≥ 4 and d ≥ 2. © 2006 Wiley Periodicals, Inc. J Graph Theory 53: 101–125, 2006 相似文献
14.
Péter Komjáth 《Discrete Mathematics》2011,(15):1448
We survey some old and new results on the chromatic number of infinite graphs. 相似文献
15.
16.
《Random Structures and Algorithms》2018,53(1):140-182
The chromatic number of a graph G is defined as the minimum number of colors required for a vertex coloring where no two adjacent vertices are colored the same. The chromatic number of the dense random graph where is constant has been intensively studied since the 1970s, and a landmark result by Bollobás in 1987 first established the asymptotic value of . Despite several improvements of this result, the exact value of remains open. In this paper, new upper and lower bounds for are established. These bounds are the first ones that match each other up to a term of size o(1) in the denominator: they narrow down the coloring rate of to an explicit interval of length o(1), answering a question of Kang and McDiarmid. 相似文献
17.
We study a model of random graph where vertices are n i.i.d. uniform random points on the unit sphere Sd in , and a pair of vertices is connected if the Euclidean distance between them is at least 2??. We are interested in the chromatic number of this graph as n tends to infinity. It is not too hard to see that if ?>0 is small and fixed, then the chromatic number is d+2 with high probability. We show that this holds even if ?→0 slowly enough. We quantify the rate at which ? can tend to zero and still have the same chromatic number. The proof depends on combining topological methods (namely the Lyusternik–Schnirelman–Borsuk theorem) with geometric probability arguments. The rate we obtain is best possible, up to a constant factor—if ?→0 faster than this, we show that the graph is (d+1)‐colorable with high probability.25 相似文献
18.
A. J. W. Duijvestijn. 《Mathematics of Computation》1996,65(215):1289-1293
Data is presented on the number of 3-connected planar graphs, isomorphic to the graphs of convex polyhedra, with up to 26 edges. Results have been checked with the the number of rooted c-nets of R.C. Mullin and P.J. Schellenberg and Liu Yanpei.
19.
An acyclic graphoidal cover of a graph G is a collection ψ of paths in G such that every path in ψ has at least two vertices, every vertex of G is an internal vertex of at most one path in ψ and every edge of G is in exactly one path in ψ. The minimum cardinality of an acyclic graphoidal cover of G is called the acyclic graphoidal covering number of G and is denoted by ηa. In this paper we characterize the class of graphs G for which ηa=Δ−1 where Δ is the maximum degree of a vertex in G. 相似文献
20.
In the middle 1930's, the early days of combinatorial lattice theory, it had been conjectured thatin any finite modular lattice the number of join-irreducible elements equals the number of meetirreducible elements. The conjecture was settled in 1954 by R. P. Dilworth in a remarkable combinatorial generalization. Quite recently we have been led to this question. Which ordered setsS satisfy the property that,for any modular lattice M, the number of subdiagrams of M isomorphic to S equals the number of subdiagrams of M dually isomorphic to S? 相似文献