共查询到20条相似文献,搜索用时 10 毫秒
1.
The rate constant for the Br + O3 → BrO + O2 reaction was measured by the discharge flow technique, employing resonance fluorescence detection of Br. Over the temperature range 248 to 418 K, in 1 to 3 torr of He, decays of Br in excess O3 yield the value k1 = (3.28 ± 0.40) × 10?11 e[?944±30]/T cm3 molecule?1 s?1. Cited uncertainties are at the 95% confidence level and include an estimate of the systematic errors. The rate constants for the reactions of O3 with Br, Cl, F, OH, O, and N correlate with the electron affinities of the radicals suggesting that the reactions proceed through early transition states dominated by transfer of electron density from the highest occupied molecular orbital of ozone to the singly occupied radical MO. The implications of this new measurement of k1 for stratospheric chemistry are discussed. 相似文献
2.
The kinetics of the title reactions have been studied using the discharge-flow mass spectrometic method at 296 K and 1 torr of helium. The rate constant obtained for the forward reaction Br+IBr→I+Br2 (1), using three different experimental approaches (kinetics of Br consumption in excess of IBr, IBr consumption in excess of Br, and I formation), is: k1=(2.7±0.4)×10−11 cm3 molecule−1s−1. The rate constant of the reverse reaction: I+Br2→Br+IBr (−1) has been obtained from the Br2 consumption rate (with an excess of I atoms) and the IBr formation rate: k−1=(1.65±0.2)×10−13 cm3molecule−1s−1. The equilibrium constant for the reactions (1,−1), resulting from these direct determinations of k1 and k−1 and, also, from the measurements of the equilibrium concentrations of Br, IBr, I, and Br2, is: K1=k1/k−1=161.2±19.7. These data have been used to determine the enthalpy of reaction (1), ΔH298°=−(3.6±0.1) kcal mol−1 and the heat of formation of the IBr molecule, ΔHf,298°(IBr)=(9.8±0.1) kcal mol−1. © 1998 John Wiley & sons, Inc. Int J Chem Kinet 30: 933–940, 1998 相似文献
3.
The total rate constant for the reaction of Cl atoms with HO2NO2 was found to be less than 1.0 × 10?13 cm3 s?1 at 296 K by the discharge flow/resonance fluorescence technique. The reaction was also studied by the discharge flow/mass spectrometric technique. k1a + k1b was measured to be (3.4 ± 1.4) × 10?14 cm3 s?1 at 296 K. The reaction is too slow to be of any importance in stratospheric chemistry. 相似文献
4.
We have studied the effect of vibrational mode activation in the CF3 radical on the bromine abstraction reaction; CF3 + Br2 → CF3Br + Br. Excess vibrational energy resides in the symmetric modes of the radical after 248 nm photolysis of the parent molecule, CF3I. Our data indicate that the hot radicals react no faster than thermalized CF3, and may actually have a lower cross-section for reaction. Dynamical factors that result in poor coupling of the vibrational energy to the reaction coordinate, as well as other similar considerations, could be responsible for the experimental observations. In addition, we have made an independent determination of the rate for the bromine abstraction reaction of (1.08 ± .13) × 1012 s?1 cm3 mol?1. 相似文献
5.
The overall rate coefficient k of the self recombination of BrO radicals has been measured at 298 K with use of the discharge flow/mass spectrometry technique. The rate coefficient k2 for the reaction channel forming Br2 has been also determined. The results are: k = (3.2 ± 0.5) × 10?12 and k2 = (4.7 ± 1.5) × 10?13 (in cm3 molecule?1 s?1). These results are discussed with respect to previous literature data. 相似文献
6.
The rate coefficient of the reaction has been determined in the temperature range of 2700–3500 K using a shock tube technique. C2N2? H2? Ar mixtures were heated behind incident shock waves and the early-time CN history was monitored using broad-band absorption spectroscopy. The rate coefficient providing the best fit to the data was in good agreement with extrapolations of previously published low-temperature results. 相似文献
7.
8.
The rate coefficient, k, of the reaction has been determined in the temperature range 2460–2840 K using a shock tube technique. C2N2? H2O? Ar mixtures were heated behind incident shock waves and the CN and OH concentration time histories were monitored simultaneously using broad-band absorption near 388 nm (CN) and narrow-line laser absorption at 306.67 nm (OH). The rate coefficient expression providing the best fit to the data was with uncertainty limits of about ±45% in the temperature range 2460–2840 K. The rate coefficient of the reverse reaction was calculated using detailed balancing, and its extrapolation to lower temperatures was compared with previously published results. 相似文献
9.
Veronica I. Jaramillo Samuel Gougeon Sbastien D. Le Picard Andr Canosa Mark A. Smith Bertrand R. Rowe 《国际化学动力学杂志》2002,34(6):339-344
The temperature dependence of the rate coefficient for the reaction, OH + HBr has been reinvestigated at low temperatures (T = 48–224 K) by using uniform supersonic flow reactors with laser induced fluorescence detection. This paper presents two forms of global fits: k(T) = 1.11 × 10?11 (T/298)?0.91 cm3 s?1 and k(T) = 1.06 × 10?11 (T/298)?1.09 cm3 s?1, both of which accurately describe the temperature dependence of the rate coefficient for the title reaction within the temperature range 20–350 K. These fits indicate that at temperatures below 200 K, the rate coefficient for this reaction shows inverse temperature dependence, while above 200 K the reaction shows insignificant temperature dependence. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 339–344, 2002 相似文献
10.
The rate constant for the NH3 + NO2 rlhar2; NH2 + HONO reaction (1) has been kinetically modeled by using the photometrically measured NO2 decay rates available in the literature. The rates of NO2 decay were found to be strongly dependent on reaction (1) and, to a significant extent, on the secondary reactions of NH2 with NOX and the decomposition of HONO formed in the initiation reaction. These secondary reactions lower the values of k1 determined directly from the experiments. Kinetic modeling of the initial rates of NO2 decay computed from the reported rate equation, - d[NO2]/dt = k1[NH3][NO2] based on the conditions employed led to the following expression: This result agrees closely with the values predicted by ab initio MO [G2M//B3LYP/6-311 G(d,p)] and TST calculations. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 245–251, 1997. 相似文献
11.
Absolute rate constants at room temperature for the metathesis reaction have been measured under VLPP conditions: k1 = (2.0 ± 0.5) × 108M?1·s?1, k2 = (3.0 ± 0.7) × 108M?1·s?1. The radicals were generated through collisionless infrared-multiphoton decomposition of the corresponding iodides by irradiation from a high-power CO2-TEA laser. The reaction of ?2F5 and ?3F7 with \documentclass{article}\pagestyle{empty}\begin{document}$$\mathop {\rm N}\limits^{\rm .} {\rm O}_{\rm 2} $$\end{document} are briefly discussed in relation to the reaction of ?3 with \documentclass{article}\pagestyle{empty}\begin{document}$$\mathop {\rm N}\limits^{\rm .} {\rm O}_{\rm 2} $$\end{document}, which had been measured previously. 相似文献
12.
Yuki Ninomiya Satoshi Hashimoto Masahiro Kawasaki Timothy J. Wallington 《国际化学动力学杂志》2000,32(3):125-130
Cavity ring‐down (CRD) techniques were used to study the kinetics of the reaction of Br atoms with ozone in 1–205 Torr of either N2 or O2, diluent at 298 K. By monitoring the rate of formation of BrO radicals, a value of k(Br + O3) = (1.2 ± 0.1) × 10−12 cm3 molecule−1 s−1 was established that was independent of the nature and pressure of diluent gas. The rate of relaxation of vibrationally excited BrO radicals by collisions with N2 and O2 was measured; k(BrO(v) + O2 → BrO(v − 1) + O2) = (5.7 ± 0.3) × 10−13 and k(BrO(v) + N2 → BrO(v − 1) + N2) = (1.5 ± 0.2) × 10−13 cm3 molecule−1 s−1. The increased efficiency of O2 compared with N2 as a relaxing agent for vibrationally excited BrO radicals is ascribed to the formation of a transient BrO–O2 complex. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 125–130, 2000 相似文献
13.
With potential-energy-surface parameters provided by Walch's calculations of the reaction path, we have calculated the thermal rate coefficient for the reaction, The theory employed assumes that the change in the reaction of the electron spin has little or no effect on the rate coefficient. The resulting expression for k1, in the temperature range, 1000 K ≤ T ≤ 4000 K, is in remarkably good agreement with the limited amount of experimental data available, suggesting that the assumption is valid. The origins of the “prompt-NO” phenomenon, our analysis of reaction (RI), and comparison of the results with experiment are all discussed in detail. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 253–259, 1997. 相似文献
14.
15.
Pulsed laser photolysis of O3 in a large excess of N2 has been used to generate O(3P) atoms in the presence of OCS. By observing chemiluminescence from the small fraction of electronically excited SO2 formed in the reaction of SO with O3, rate constants of (1.7 ± 0.2) × 10?14 and (8.7 ± 1.6) × 10?14 cm3/molecule sec have been determined at 296 ± 4 K for the reactions and In addition, it has been shown that any reaction between SO and OCS has a rate constant 10?14 cm3/molecule sec. 相似文献
16.
Measurements of the rate coefficient of the reaction (O3P) + NO2 → O2 + NO have been made at 296°K and 240°K, using the technique of NO2* chemiluminescent decay. Values of 9.3 × 10?12 cm3 molec?1 sec?1 at 296°K and 10.5 × 10?12 cm3 molec?1 sec?1 at 240°K were obtained, in excellent agreement with the recent results of Davis, Herron, and Huie [1]. The earlier lower values may have resulted from loss of NO2 on surfaces. 相似文献
17.
We analyze the ignition delay in hydrogen–oxygen combustion and the important chain ‐branching reaction H + O2→ OH + O that occurs behind the shock waves in shock tube experiments. We apply a stochastic Bayesian approach to quantify uncertainties in the theoretical model and experimental data. The approach involves a statistical inverse problem, which has four “components” as input information: (a) model, (b) prior joint probability density function (PDF) of the uncertain parameters, (c) experimental data, and (d) uncertainties in the scenario parameters. The solution of this statistical inverse problem is a posterior joint PDF of the uncertain parameters from which we can easily extract statistical information. We first perform a parametric study to investigate how the level of the total uncertainty (which we define as the sum of model uncertainty and experimental uncertainty) affects the uncertainty in the rate coefficient k1 of the reaction H + O2→ OH + O, which is “most likely” expressed by k1=1.73×1023T?2.5exp(?11550/T) cm3 mol?1 s?1 over the experimental temperature range 1100–1472 K. We also introduce the idea of “irreducible” uncertainty when considering other parameters in the system. After statistically calibrating the parameters modeling the rate coefficient k1, we predict its 95% confidence interval (CI) for different temperature regimes and compare the CI against the values of k1 obtained deterministically. Our results show that a small uncertainty in gas temperature (±5 K) introduces appreciable uncertainty in k1. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 586–597, 2012 相似文献
18.
Nonadiabatic quantum dynamical calculations have been carried out on the two coupled potential energy surfaces (12A′ and 22A′) (Mota et al., J Theor Comput Chem 2009, 8, 849) for the title reaction. Initial state‐resolved reaction probabilities and cross sections for ground and excited states for collision energies of 0.005–1.0 eV are determined, respectively. Nonadiabatic transition is enhanced about four times by isotopic substitution of N + NH by N + ND reaction. It turns out that the nonadiabatic effects exert no significant contribution in the N + ND → N2 + D reaction. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011 相似文献
19.
The reaction paths for the formation of Si3O3 molecules have been investigated at high level ab initio quantum chemical calculations by using the QCISD method with the 6-311++G(d,p) basis set. The cis-Si2O2 isomer does not participate in the chemical mechanism for the formation of Si3O3 molecules. Although the SiO + cis-Si2O2 reaction is exothermic and spontaneous, it is not expected to explain the growth mechanism of Si3O3 in the interstellar silicate grains of circumstellar envelopes surrounding M-type giants. The reaction of SiO with cyclic Si2O2 molecules is exothermic, is spontaneous, and has a nonplanar transition state. The Gibbs free energy for the transition state formation, (DeltaG0#), is around 5.5 kcal mol-1 at 298 K. The bimolecular rate coefficient for this reaction, kT, is about 1 x 10-12 cm3 molecule-1 s-1 at 298 K and in the collision limit, 1.5 x 10-10 cm3 molecule-1 s-1, at 500 K. The activation energy, Ea, is about 8 kcal mol-1. The enthalpy of Si3O3 fragmentation is 53.9 kcal mol-1 at 298 K. The SiO + cyclic Si2O2 reaction is expected to be the most prominent reaction path for the Si3O3 formation in interstellar environment and fabrication of silicon nanowires. 相似文献