首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper addresses a modified singularity removal technique for the eigenvalue or optimal mode problems in pipe flow using a pseudospectral method. The current approach results in the linear stability operator to be devoid of any unstable physically spurious modes, and thus, it provides higher numerical stability during time-based integration. The correctness of the numerical operator is established by calculating the known eigenvalues of pipe Poiseuille flow. Subsequently, the optimal modes are determined with Farrell's approach and compared with the existing literature. The usefulness of this approach is further demonstrated in the time-based numerical integration of the linearized Navier-Stokes operator for the adjoint method–based optimal mode determination. The numerical scheme is implemented with the radial velocity-radial vorticity formulation. Even number of Chebyshev-Lobatto grid points are distributed over the domain r∈[−1,1] omitting the centerline, which also efficiently provides higher resolution near the wall boundary. The boundary conditions are imposed with homogeneous wall boundary conditions, whereas the analytic nature of a proper set of base functions enforces correct centerline conditions. The resulting redundancy introduced in the process is eliminated with the proper usage of parity.  相似文献   

2.
A complete boundary integral formulation for compressible Navier–Stokes equations with time discretization by operator splitting is developed using the fundamental solutions of the Helmholtz operator equation with different order. The numerical results for wall pressure and wall skin friction of two‐dimensional compressible laminar viscous flow around airfoils are in good agreement with field numerical methods. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
A multigrid method is studied for the solution of a linear system resulting from the high-order nine-point discretization of the convection-diffusion equations. The residual injection operator is used as a substitute for the usual full-weighting in the multigrid process. A heuristic analysis is given to obtain a dynamic injection operator that is cost-effective for both diffusion- and convection-dominated problems. Numerical experiments are employed to test the stability and efficiency of the proposed method. © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
给出了弹性力学三维问题的离散算子差分法 ,讨论离散算子差分法在三维问题中的特点 ,意在为该方法的进一步发展提供依据 ,为应用弱形式进行数值求解的研究提供参考。本文从弹性力学平衡方程更为一般的弱形式出发 ,给出了含边界参数的弱形式方程。由该方程不仅可以得到有限元法 ,还可得到离散算子差分法。给出了两个八结点块体单元 ,虽然单元中位移函数是非协调的 ,不需特殊处理便可保证离散格式收敛 ,并对单元位移有十分好的反映能力。  相似文献   

5.
A new efficient numerical method for three-dimensional hydrodynamic computations is presented and discussed in this paper. The method is based on the operator splitting method and combined with Eulerian–Lagrangian method, finite element method and finite difference method. To increase the efficiency and stability of the numerical solutions, the operator splitting method is employed to partition the momentum equations into three parts, according to physical phenomena. A time step is divided into three time substeps. In the first substep, advection and Coriolis force are solved using the explicit Eulerian–Lagrangian method. In the second substep, horizontal diffusion is approximated by implicit FEM in each horizontal layer. In the last substep, the continuity equation is solved by implicit FEM, and vertical diffusion and pressure gradient are discretized by implicit FDM in each nodal column. The stability analysis shows that this method is unconditionally stable. A number of numerical experiments have been performed. The results simulated by the present scheme agree well with analytical solutions and the other documented model results. The method is efficient for 3D shallow water flow computations and fully fits complicated configurations. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
用分解算子法和延续算法对二维Rayleigh-Benard对流问题的稳定性进行了数值追踪研究.画出了 Pr= 10时不同 Ra所对应的流线,等涡线和等温线图;并求出了对于不同Pr数所对应的临界Ra数,其值大约为2740,计算结果与物理分析相一致,与三维实验结果比较也合理.  相似文献   

7.
In this paper, we present a new hybrid-streamline-upwind finite-element method, which is based on the finite analytic method developed in the field of the finite difference method. In order to obtain an optimal shape function, we introduce an adjoint differential operator to the differential operator for a steady advection-diffusion equation. The shape functions which satisfy these differential operators are mutually dual. One of them interpolates accurately the functions appearing in convection-dominated flows, the other becomes a hybrid-streamline-upwind weighting function. Furthermore, we define a discrete del operator for the reduction of memory storage in the computer. As a result, we achieve simplicity of formulation and high-speed calculation of the finite-element method.  相似文献   

8.
提出了一种基于残余力向量和改进遗传算法的桥梁结构损伤识别方法。在无噪声的情况下,使用任意一阶模态数据,残余力向量法都能够对损伤进行准确定位。但是,振动测试数据中往往包含噪声,导致运用残余力向量法进行损伤识别完全不可行。考虑到这个问题,在常规模态分析的基础上,以节点的残余力向量构造目标函数,提出了一种用于遗传搜索优化的目标函数形式。利用改进遗传算法重点进行了噪声条件下的结构损伤定位和定量研究,并对遗传算法的参数选取问题进行了深入探讨。遗传算法的主要改进包括:采用浮点编码、采用基于标准化几何分布排名的选择策略、采用最优保存策略、采用算术交叉算子、采用自适应变异算子。最后,本文用一个连续梁桥模型进行了数值模拟,验证了所提出方法的有效性,并对方法应用中存在的一些问题进行了深入探讨。  相似文献   

9.
提出了基于提升方案的自适应算子自定义小波有限元法,构造了一种新的算子自定义小波薄板单元。建立二维Hermite型有限元多分辨空间和两尺度关系,并由广义变分原理推导薄板结构关于尺度函数和小波函数的内积关系式,即算子。为满足算子正交性,提出基于提升方案的算子自定义小波单元的构造方法,其优点在于可根据问题的需要来设计具有期望特性的小波基。提出基于两尺度误差的自适应算子自定义小波有限元方法,通过向大于误差阈值的局域添加算子自定义小波,实现薄板结构问题的高效求解。算子自定义小波有限元法节省了重新划分网格或提高插值函数的阶次所带来的大量有限元前处理时间,并且实现薄板问题的高效解耦运算。  相似文献   

10.
IntroductionDiscreteoperatorwaspushedforwardinpapers [1 ,2 ] ,whichtriedtounifyfiniteelementmethodanddifferencemethodintooneuniformframeandbenefitusforfindingnewmethods.ProfessorLIRong_huaetal.gaveamethod‘generatedifferencemethod’[3,4 ]isakindofinnovationandd…  相似文献   

11.
Consider a propagative medium, possibly inhomogeneous, containing some scatterers whose positions are unknown. Using an array of transmit–receive transducers, how can one generate a wave that would focus in space and time near one of the scatterers, that is, a wave whose energy would confine near the scatterer during a short time? The answer proposed in the present paper is based on the so-called DORT method (French acronym for: decomposition of the time reversal operator) which has led to numerous applications owing to the related space-focusing properties in the frequency domain, i.e., for time-harmonic waves. This method essentially consists in a singular value decomposition (SVD) of the scattering operator, that is, the operator which maps the input signals sent to the transducers to the measure of the scattered wave. By introducing a particular SVD related to the symmetry of the scattering operator, we show how to synchronize the time-harmonic signals derived from the DORT method to achieve space–time focusing. We consider the case of the scalar wave equation and we make use of an asymptotic model for small sound-soft scatterers, usually called the Foldy–Lax model. In this context, several mathematical and numerical arguments that support our idea are explored.  相似文献   

12.
The Stokes operator is a differential-integral operator induced by the Stokes equations. In this paper, we analyze the Stokes operator from the point of view of the Helmholtz minimum dissipation principle. We show that, through the Hodge orthogonal decomposition, a pair of bounded linear operators, a restriction operator and an extension operator, are induced from the divergence-free constraint. As a consequence, we use it to calculate the eigenvalues of the Stokes operator.  相似文献   

13.
A semi‐implicit three‐step Runge–Kutta scheme for the unsteady incompressible Navier–Stokes equations with third‐order accuracy in time is presented. The higher order of accuracy as compared to the existing semi‐implicit Runge–Kutta schemes is achieved due to one additional inversion of the implicit operator I‐τγL, which requires inversion of tridiagonal matrices when using approximate factorization method. No additional solution of the pressure‐Poisson equation or evaluation of Navier–Stokes operator is needed. The scheme is supplied with a local error estimation and time‐step control algorithm. The temporal third‐order accuracy of the scheme is proved analytically and ascertained by analysing both local and global errors in a numerical example. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
We discuss an Adams-type predictor-corrector method for the numericalsolution of fractional differential equations. The method may be usedboth for linear and for nonlinear problems, and it may be extended tomulti-term equations (involving more than one differential operator)too.  相似文献   

15.
An approximate solution ω = A[ω, μ] of the nonlinear integral Nekrasov equation is obtained by successive replacement of the kernel of the integral operator by a close one. The solution is sought not directly at the bifurcation point μ1 = 3 of the linearized equation ω = μL[ω] but at the point μ = 1 at which operator A[ω, μ], remaining nonlinear in ω, is linear in μ. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 6, pp. 50–56, November–December, 2007.  相似文献   

16.
基于结构逻辑图的理论,提出了以下确界算子和上确界算子分别作为串联与并联系统可靠度的计算模型;形成了复杂工程系统可靠度的逻辑分析方法。在此基础上,应用多阶段决策算子法,成功地求解了工程系统可靠度的优化设计问题;给出了桁架结构优化的数值计算例题。  相似文献   

17.
It is very important for gas-structure interaction between compressible ideal gas and elastic structure of space folded membrane booms during the inflatable deployment. In order to study this gas-structure interaction problem, Arbitrary Lagrangian-Eulerian (ALE) finite element method was employed. Gas-structure interaction equation was built based on equilibrium integration relationship, and solved by operator split method. In addition, numerical analysis of V-shape folded membrane booms inflated by gas was given, the variation of inner pressure as well as deployment velocities of inflatable boom at different stage were simulated. Moreover, these results are consistent with the experiment of the same boom, which shows that both ALE method and operator split method are feasible and reliable methods to study gas-structure interaction problem.  相似文献   

18.
The objective of this paper is to present a methodology of using a two‐step split‐operator approach for solving the shallow water flow equations in terms of an orthogonal curvilinear co‐ordinate system. This approach is in fact one kind of the so‐called fractional step method that has been popularly used for computations of dynamic flow. By following that the momentum equations are decomposed into two portions, the computation procedure involves two steps. The first step (dispersion step) is to compute the provisional velocity in the momentum equation without the pressure gradient. The second step (propagation step) is to correct the provisional velocity by considering a divergence‐free velocity field, including the effect of the pressure gradient. This newly proposed method, other than the conventional split‐operator methods, such as the projection method, considers the effects of pressure gradient and bed friction in the second step. The advantage of this treatment is that it increases flexibility, efficiency and applicability of numerical simulation for various hydraulic problems. Four cases, including back‐water flow, reverse flow, circular basin flow and unsteady flow, have been demonstrated to show the accuracy and practical application of the method. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
薄板优化设计的多阶段决策算子法   总被引:1,自引:0,他引:1  
本文在研究应用多阶段决策算子方法求解弹性薄板结构优化的问题中,运用了有限元的分析方法,按多阶段决策分析的需要推导了位移约束条件的表达式及状态转换方程式,成功地解决了离散变量的弹性薄板结构优化设计的问题。文中编制了薄板优化设计的计算机程序,给出了在微机上作出的计算例题。  相似文献   

20.
This paper addresses the accuracy of numerical methods to compute the transient energy growth of plane Poiseuille flow. We show that using the Chebyshev collocation method to discretize the linearized governing equations in the wall‐normal direction can introduce numerical problems when computing the energy evolution of the flow. We demonstrate that spurious eigenmodes of the discretized linear operator and numerical integration errors are the possible sources of the numerical problems, and we also show that spurious eigenvalues with negative real parts of large magnitude can affect the calculation of energy growth. These difficulties can be avoided by using a spectral Galerkin method where the basis functions satisfy the boundary conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号