首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Approximate or exact Riemann solvers play a key role in Godunov‐type methods. In this paper, three approximate Riemann solvers, the MFCAV, DKWZ and weak wave approximation method schemes, are investigated through numerical experiments, and their numerical features, such as the resolution for shock and contact waves, are analyzed and compared. Based on the analysis, two new adaptive Riemann solvers for general equations of state are proposed, which can resolve both shock and contact waves well. As a result, an ALE method based on the adaptive Riemann solvers is formulated. A number of numerical experiments show good performance of the adaptive solvers in resolving both shock waves and contact discontinuities. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
E. F. Toro 《Shock Waves》1995,5(1-2):75-80
Approaches for finding direct, approximate solutions to the Riemann problem are presented. These result in three approximate Riemann solvers. Here we discuss the time-dependent Euler equations but the ideas are applicable to other systems. The approximate solvers are (i) assessed on local Riemann problems with exact solutions and (ii) used in conjunction with the Weighted Average Flux (WAF) method to solve the two-dimensional Euler equations numerically. The resulting numerical technique is assessed on a shock reflection problem. Comparison with experimental observation is carried out.  相似文献   

3.
Maire等提出了一种新型的有限体积中心型拉氏方法, 该方法大大地改善了一直困扰着一般中心型拉氏方法的虚假网格变形. 然而在计算数值流和移动网格时,该方法只应用了数值黏性较大的弱波近似(weak wave approximatedmethod, WWAM) Riemann解, 而且方法的设计表明其他类型的近似Riemann解不能简单直接地应用上去. 将体平均多流管(multifluid channel on averaged volume, MFCAV)近似Riemann解视为对WWAM的修正,成功将其应用于新型方法中, 数值实验表明应用了MFCAV 的新方法是有效的. 研究为将其他更为有效的近似Riemann解应用于该新型方法中开辟了一条道路.   相似文献   

4.
Numerical methods based upon the Riemann Problem are considered for solving the general initial-value problem for the Euler equations applied to real gases. Most of such methods use an approximate solution of the Riemann problem when real gases are involved. These approximate Riemann solvers do not yield always a good resolution of the flow field, especially for contact surfaces and expansion waves. Moreover, approximate Riemann solvers cannot produce exact solutions for the boundary points. In order to overcome these shortcomings, an exact solution of the Riemann problem is developed, valid for real gases. The method is applied to detonation products obeying a 5th order virial equation of state, in the shock-tube test case. Comparisons between our solver, as implemented in Random Choice Method, and finite difference methods, which do not employ a Riemann solver, are given.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

5.
A very simple linearization of the solution to the Riemann problem for the steady supersonic Euler equations is presented. When used locally in conjunction with the Godunov method, computing savings by a factor of about four relative to the use of exact Riemann solvers can be achieved. For severe flow regimes, however, the linearization loses accuracy and robustness. We then propose the use of a Riemann solver adaptation procedure. This retains the accuracy and robustness of the exact Riemann solver and the computational efficiency of the cheap linearized Riemann solver. Numerical results for two- and three-dimensional test problems are presented.  相似文献   

6.
The aims of this paper are threefold: to increase the level of awareness within the shock-capturing community of the fact that many Godunov-type methods contain subtle flaws that can cause spurious solutions to be computed; to identify one mechanism that might thwart attempts to produce very-high-resolution simulations; and to proffer a simple strategy for overcoming the specific failings of individual Riemann solvers.  相似文献   

7.
Abstract. An approximate solution of the Riemann problem associated with a realisable and objective turbulent second-moment closure, which is valid for compressible flows, is examined. The main features of the continuous model are first recalled. An entropy inequality is exhibited, and the structure of waves associated with the non-conservative hyperbolic convective system is briefly described. Using a linear path to connect states through shocks, approximate jump conditions are derived, and the existence and uniqueness of the one-dimensional Riemann problem solution is then proven. This result enables to construct exact or approximate Riemann-type solvers. An approximate Riemann solver, which is based on Gallou?t's recent proposal is eventually presented. Some computations of shock tube problems are then discussed. Received 2 March 1999 / Accepted 24 August 2000  相似文献   

8.
The Riemann solver is the fundamental building block in the Godunov‐type formulation of many nonlinear fluid‐flow problems involving discontinuities. While existing solvers are obtained either iteratively or through approximations of the Riemann problem, this paper reports an explicit analytical solution to the exact Riemann problem. The present approach uses the homotopy analysis method to solve the nonlinear algebraic equations resulting from the Riemann problem. A deformation equation defines a continuous variation from an initial approximation to the exact solution through an embedding parameter. A Taylor series expansion of the exact solution about the embedding parameter provides a series solution in recursive form with the initial approximation as the zeroth‐order term. For the nonlinear shallow‐water equations, a sensitivity analysis shows fast convergence of the series solution and the first three terms provide highly accurate results. The proposed Riemann solver is implemented in an existing finite‐volume model with a Godunov‐type scheme. The model correctly describes the formation of shocks and rarefaction fans for both one and two‐dimensional dam‐break problems, thereby verifying the proposed Riemann solver for general implementation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
This paper aims to reassess the Riemann solver for compressible fluid flows in Lagrangian frame from the viewpoint of modified equation approach and provides a theoretical insight into dissipation mechanism. It is observed that numerical dissipation vanishes uniformly for the Godunov‐type schemes in the sense that associated dissipation matrix has zero determinant if an exact or approximate Riemann solver is used to construct numerical fluxes in the Lagrangian frame. This fact connects to some numerical defects such as the wall‐heating phenomenon and start‐up errors. To cure these numerical defects, a traditional numerical viscosity is added, as well as the artificial heat conduction is introduced via a simple passage of the Lax–Friedrichs type discretization of internal energy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The scope of this paper is three fold. We first formulate upwind and symmetric schemes for hyperbolic equations with non‐conservative terms. Then we propose upwind numerical schemes for conservative and non‐conservative systems, based on a Riemann solver, the initial conditions of which are evolved non‐linearly in time, prior to a simple linearization that leads to closed‐form solutions. The Riemann solver is easily applied to complicated hyperbolic systems. Finally, as an example, we formulate conservative schemes for the three‐dimensional Euler equations for general compressible materials and give numerical results for a variety of test problems for ideal gases in one and two space dimensions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
This article is to continue the present author's work (International Journal of Computational Fluid Dynamics (2009) 23 (9), 623–641) on studying the structure of solutions of the Riemann problem for a system of three conservation laws governing two-phase flows. While existing solutions are limited and found quite recently for the Baer and Nunziato equations, this article presents the first instance of an exact solution of the Riemann problem for two-phase flow in gas–liquid mixture. To demonstrate the structure of the solution, we use a hyperbolic conservative model with mechanical equilibrium and without velocity equilibrium. The Riemann problem solution for the model equations comprises a set of elementary waves, rarefaction and discontinuous waves of various types. In particular, such a solution treats both the wave structure and the intermediate states of the two-phase gas–liquid mixture. The resulting exact Riemann solver is fully non-linear, direct and complete. On this basis then, we use locally the exact Riemann solver for the two-phase flow in gas–liquid mixture within the framework of finite volume upwind Godunov methods. In order to demonstrate the effectiveness and accuracy of the proposed solver, we consider a series of test problems selected from the open literature and compare the exact and numerical results by using upwind Godunov methods, showing excellent oscillation-free results in two-phase fluid flow problems.  相似文献   

12.
An approximate‐state Riemann solver for the solution of hyperbolic systems of conservation laws with source terms is proposed. The formulation is developed under the assumption that the solution is made of rarefaction waves. The solution is determined using the Riemann invariants expressed as functions of the components of the flux vector. This allows the flux vector to be computed directly at the interfaces between the computational cells. The contribution of the source term is taken into account in the governing equations for the Riemann invariants. An application to the water hammer equations and the shallow water equations shows that an appropriate expression of the pressure force at the interface allows the balance with the source terms to be preserved, thus ensuring consistency with the equations to be solved as well as a correct computation of steady‐state flow configurations. Owing to the particular structure of the variable and flux vectors, the expressions of the fluxes are shown to coincide partly with those given by the HLL/HLLC solver. Computational examples show that the approximate‐state solver yields more accurate solutions than the HLL solver in the presence of discontinuous solutions and arbitrary geometries. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
Numerical methods have become well established as tools for solving problems in hydraulic engineering. In recent years the finite volume method (FVM) with shock capturing capabilities has come to the fore because of its suitability for modelling a variety of types of flow; subcritical and supercritical; steady and unsteady; continuous and discontinuous and its ability to handle complex topography easily. This paper is an assessment and comparison of the performance of finite volume solutions to the shallow water equations with the Riemann solvers; the Osher, HLL, HLLC, flux difference splitting (Roe) and flux vector splitting. In this paper implementation of the FVM including the Riemann solvers, slope limiters and methods used for achieving second order accuracy are described explicitly step by step. The performance of the numerical methods has been investigated by applying them to a number of examples from the literature, providing both comparison of the schemes with each other and with published results. The assessment of each method is based on five criteria; ease of implementation, accuracy, applicability, numerical stability and simulation time. Finally, results, discussion, conclusions and recommendations for further work are presented. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
We present a Roe‐type weak formulation Riemann solver where the average coefficient matrix is computed numerically. The novelty of this approach is that it is general enough that can be applied to any hyperbolic system while retaining the accuracy of the original Roe solver. We show applications to the compressible Euler equations with general equation of state. An alternative version of the method uses directly the eigenvectors in the averaging process, simplifying the algorithm. These new solvers are applied in conservative and path‐conservative schemes with high‐order accuracy and on unstructured meshes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we present a general Riemann solver which is applied successfully to compute the Euler equations in fluid dynamics with many complex equations of state (EOS). The solver is based on a splitting method introduced by the authors. We add a linear advection term to the Euler equations in the first step, to make the numerical flux between cells easy to compute. The added linear advection term is thrown off in the second step. It does not need an iterative technique and characteristic wave decomposition for computation. This new solver is designed to permit the construction of high‐order approximations to obtain high‐order Godunov‐type schemes. A number of numerical results show its robustness. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
This paper compares several high-resolution schemes for the computation of detonation waves in solid explosives. The essential difficulty in comparison with the usual application domain of these schemes is due to the complexity and variety of the equations of state which are used. The HLLC Riemann solver is used in the context of an Eulerian MUSCL scheme and in conjunction with a shock-tracking scheme. The motivation and justification for the various choices in the building of these schemes are discussed. The accuracy of both schemes, full Eulerian and shock-tracking variant, is clearly demonstrated. In addition, the validity of the results is shown. For one-dimensional applications the shock-tracking scheme is very accurate and relatively simple. For multidimensional applications it is recommended that the full Eulerian version be used. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
G. J. Ball 《Shock Waves》1996,5(5):311-325
A Free-Lagrange numerical procedure for the simulation of two-dimensional inviscid compressible flow is described in detail. The unsteady Euler equations are solved on an unstructured Lagrangian grid based on a density-weighted Voronoi mesh. The flow solver is of the Godunov type, utilising either the HLLE (2 wave) approximate Riemann solver or the more recent HLLC (3 wave) variant, each adapted to the Lagrangian frame. Within each mesh cell, conserved properties are treated as piece-wise linear, and a slope limiter of the MUSCL type is used to give non-oscillatory behaviour with nominal second order accuracy in space. The solver is first order accurate in time. Modifications to the slope limiter to minimise grid and coordinate dependent effects are described. The performances of the HLLE and HLLC solvers are compared for two test problems; a one-dimensional shock tube and a two-dimensional blast wave confined within a rigid cylinder. The blast wave is initiated by impulsive heating of a gas column whose centreline is parallel to, and one half of the cylinder radius from, the axis of the cylinder. For the shock tube problem, both solvers predict shock and expansion waves in good agreement with theory. For the HLLE solver, contact resolution is poor, especially in the blast wave problem. The HLLC solver achieves near-exact contact capture in both problems. Received May 25, 1995 / Accepted September 11, 1995  相似文献   

18.
Godunov‐type algorithms are very attractive for the numerical solution of discontinuous flows. The reconstruction of the profile inside the cells is crucial to scheme performance. The non‐linear generalization of the discontinuous profile method (DPM) presented here for the modelling of two‐phase flow in pipes uses a discontinuous reconstruction in order to capture shocks more efficiently than schemes using continuous functions. The reconstructed profile is used to define the Riemann problem at cell interfaces by averaging of the components of the variable in the base of eigenvectors over their domain of dependence. Intercell fluxes are computed by solving the Riemann problem with an approximate‐state solver. The adapted treatment of boundary conditions is essential to ensure the quality of the computational results and a specific procedure using virtual cells at both extremities of the computational domain is required. Internal boundary conditions can be treated in the same way as external ones. Application of the DPM to test cases is shown to improve the quality of computational results significantly. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper we study an extension of Osher's Riemann solver to mixtures of perfect gases whose equation of state is of the form encountered in hypersonic applications. As classically, one needs to compute the Riemann invariants of the system to evaluate Osher's numerical flux. For the case of interest here it is impossible in general to derive simple enough expressions which can lead to an efficient calculation of fluxes. The key point here is the definition of approximate Riemann invariants to alleviate this difficulty. Some of the properties of this new numerical flux are discussed. We give 1D and 2D applications to illustrate the robustness and capability of this new solver. We show by numerical examples that the main properties of Osher's solver are preserved; in particular, no entropy fix is needed even for hypersonic applications.  相似文献   

20.
PorAS, a new approximate‐state Riemann solver, is proposed for hyperbolic systems of conservation laws with source terms and porosity. The use of porosity enables a simple representation of urban floodplains by taking into account the global reduction in the exchange sections and storage. The introduction of the porosity coefficient induces modified expressions for the fluxes and source terms in the continuity and momentum equations. The solution is considered to be made of rarefaction waves and is determined using the Riemann invariants. To allow a direct computation of the flux through the computational cells interfaces, the Riemann invariants are expressed as functions of the flux vector. The application of the PorAS solver to the shallow water equations is presented and several computational examples are given for a comparison with the HLLC solver. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号