首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The strain relief of heteroepitaxial bcc-Fe(001) films, deposited at 520-570 K onto MgO(001), has been investigated by scanning tunneling microscopy. In accordance with real-time stress measurements, the tensile misfit strain is relieved during coalescence of flat, mainly 2-3 monolayers (ML) high Fe islands at the high thickness of approximately 20 ML. To accommodate the misfit between merging strain-relaxed islands, a network of 1/2[111] screw dislocations is formed. A strong barrier for dislocation glide--which is typical for bcc metals--is most likely responsible for the big delay in strain relief of Fe/MgO(001), since only the elastic energy of the uppermost layer(s) is available for the formation of an energy-costly intermediate layer.  相似文献   

2.
The geometric structure of MgO deposited on Fe(001) in ultrahigh vacuum by electron evaporation was determined in detail by using surface x-ray diffraction. In contrast to the common belief that MgO grows in direct contact on the Fe(001) substrate, we find an FeO interface layer between the substrate and the growing MgO structure which has not been considered thus far. This result opens new perspectives for the understanding of the Fe/MgO/Fe(001) interface and the tunneling magnetoresistance effect in general.  相似文献   

3.
A lattice-based kinetic Monte-Carlo (KMC) code has been developed to investigate the MgO{001} crystal growth from deposition of MgO molecules, as a prototypical case of the growth of oxide thin films. The KMC approach has been designed on the basis of an extensive database including all possible diffusion mechanisms. The corresponding activation energies have been computed through first-principles calculations at zero temperature or from Arrhenius plots of the frequencies obtained by molecular dynamics simulations with empirical potentials. Crystal growth occurs layer by layer, as experimentally observed, and the diffusion of admolecules leads to a high capacity of nucleation, which is enhanced by vacancy diffusion. We have characterized the growth through surface roughness, size distribution and density of the islands, and filling ratios of the growing layers. Moreover, we have analysed the influence of each elementary mechanism on the growth. The best quality of the deposited layers is reached for temperatures larger than 700 K and for pressures smaller than 0.1 Torr. For these conditions, the simulated surface roughness is fully consistent with available experimental results.  相似文献   

4.
The interaction of oxygen with the Mg(001) surface has been studied under UHV conditions using automatic spectroscopic ellipsometry in the energy range 1.8–5.2 eV. The first stage of oxidation can be described in terms of the growth of a surface layer consisting of a mixture of Mg and MgO with a composition up to 70% MgO and a thickness of ~4 Å. After a phase transition, where part of this mixed layer is converted into a three-dimensional MgO film, further oxidation proceeds via layer growth of the pure oxide. In order to calculate the dielectric properties of the mixed phase, the effective medium models of Maxwell-Garnett, Lorentz-Lorenz and Bruggeman are compared. It is shown that only the approach of Bruggeman is capable of describing the experimental results.  相似文献   

5.
Solid-phase reactions taking place in Al/β-Co/MgO(001) and Al/α-Co/MgO(001) film systems under conditions of self-propagating high-temperature synthesis (SHS) are investigated. In both systems, SHS products exhibit the single CoAl superstructure, which epitaxially grows on the MgO(001) surface in the Al/β-Co/MgO(001) structures and has a fine-dispersed disordered structure in the Al/α-Co/MgO(001) films. It appears that the difference in the reagent structure has an effect on the energy of activation but does not change the SHS initiation temperature and the temperature at which the initial phase involved in the reaction products nucleates. It is shown that the SHS initiation temperature in the Al/β-Co/MgO(001) and Al/α-Co/MgO(001) systems coincides with the temperature of CoAl superstructure ordering.  相似文献   

6.
Epitaxial Fe3O4/NiO bilayers were epitaxially grown on MgO(001) and Al2O3(0001) substrates to investigate the influence of the fully spin compensated (001) and the non-compensated (111) NiO interface planes between the ferromagnetic (F) and antiferromagnetic (AF) layers on the AF/F exchange coupling. Bilayers of different magnetite thicknesses and constant NiO thickness were investigated. The structural characterizations indicate a perfect epitaxy of the two layers for the both growth directions in the two Fe3O4/NiO/MgO(001) and NiO/Fe3O4/Al2O3(0001) systems. An epitaxial ferrimagnetic (Ni,Fe)Fe2O4 phase is observed at the AF/F interface when the NiO oxide is grown on the top of the Fe3O4 layer while a perfectly flat AF/F interface is observed in the Fe3O4/NiO/MgO(001) system exhibiting only a very slight interdiffusion. Magnetic measurements indicate a relative strong bias at 300 K for the bilayers grown on Al2O3(0001), which decreases with the inverse of the ferrimagnetic layer thickness as theoretically expected. On the contrary, a zero exchange biasing is observed at 300 K for the bilayers grown on MgO(001).  相似文献   

7.
Reflection high-energy electron diffraction (RHEED) operated at high pressure has been used to monitor the initial growth of titanium nitride (TiN) thin films on single-crystal (100) MgO substrates by pulsed laser deposition (PLD). This is the first RHEED study where the growth of TiN films is produced by PLD directly from a TiN target. At the initial stage of the growth (average thickness ∼2.4 nm) the formation of islands is observed. During the continuous growth the islands merge into a smooth surface as indicated by the RHEED, atomic force microscopy and field emission scanning electron microscopy. These observations are in good agreement with the three-dimensional Volmer–Weber growth type, by which three-dimensional crystallites are formed and later cause a continuous surface roughening. This leads to an exponential decrease in the intensity of the specular spot in the RHEED pattern as well.  相似文献   

8.
The film-substrate interface of c oriented YBCO thin films grown by sputtering or laser ablation on (001) MgO substrate has been investigated with high-resolution electron microscopy. The first atomic plane of the YBCO lattice is a CuO chain layer. Two interface configurations occur: (1) the YBCO lattice and the MgO lattice continue up to the interface (this configuration is occasionally associated with some periodic strain in the MgO lattice; (2) the YBCO lattice and the MgO lattice are separated by an (almost) amorphous layer with a thickness of the order of two atomic layers. This amorphous layer is found to lead to the absence of strain. In some cases the surface roughness coincided with misoriented grains but most of the steps in the MgO substrate were accommodated by steps in the YBCO of one or more complete unit cells in height and some lattice bending in the YBCO film.  相似文献   

9.
We report on the experimental observation of tunneling across an ultrathin metallic Cr spacer layer that is inserted at the interface of a Fe/MgO/Fe(001) junction. We show how this remarkable behavior in a solid-state device reflects a quenching in the transmission of particular electronic states, as expected from the symmetry-filtering properties of the MgO barrier and the band structure of the bcc Cr(001) spacer in the epitaxial junction stack. This ultrathin Cr metallic barrier can promote quantum well states in an adjacent Fe layer.  相似文献   

10.
《Surface science》1991,255(3):L529-L535
The epitaxial growth of Fe on Au(111) has been studied with scanning tunneling microscopy. At low coverage the iron nucleates forming polygonal islands whose spacing is determined by the underlying Au(111) zigzag reconstruction geometry. The islands are one atomic layer high and grow laterally with increasing coverage. At three monolayers the coherent (fcc) layer growth is disrupted and a transition to the bee iron structure occurs. We relate our results to published magnetic measurements.  相似文献   

11.
The evolution of a polycrystalline magnesium surface during oxidation at room temperature has been studied by Metastable Impact Electron Spectroscopy (MIES). This technique allowed us to follow the metal-to-insulator transformation of the top layer of the surface. An electronic signal corresponding to a metallic behavior of the surface evidences the presence of under-stoichiometric MgO species on the surface. The total covering by oxygen of the Mg surface uppermost layer, obtained at around 10 L of oxygen deposition, does not correspond to a fully insulating surface. An insulating surface is obtained after 30 L of oxygen deposition. Depositions of CO2 on a clean and a preoxidized polycrystalline Mg surface have been analyzed to give information about the composition of the surface and its evolution. CO2 adsorption in the form of CO32− compounds on preoxidized Mg is more efficient than on clean Mg. Oxygen species, corresponding to chemisorbed oxygen less bounded than oxygen in the MgO lattice, allows the formation of CO32−. Therefore, it is concluded that during oxygen deposition at room temperature, MgO islands and chemisorbed oxygen species coexist on the surface. Moreover, the larger the oxygen predeposition is, the less CO32− compounds are formed, meaning a decrease of available chemisorbed oxygen sites. From oxidation measurements at high temperature (420 K), we show that MgO islands and uncovered Mg domain coexist. Further, no under-stoichiometric compound features have been observed. The high temperature allows the direct formation of oxide MgO species in islands.  相似文献   

12.
We present x-ray diffraction experiments and multiple-scattering calculations on the structure and transport properties of a Fe/MgO/Fe(001) magnetic tunnel junction (MTJ). Coherent growth of the top Fe electrode on the MgO spacer is observed only for Fe deposition in ambient oxygen atmosphere leading to a coherent and symmetric MTJ structure characterized by FeO layers at both interfaces. This goes in parallel with calculations indicating large positive tunnel magnetoresistance (TMR) values in such symmetric junctions. The results have important implications for achieving giant TMR values.  相似文献   

13.
MgO epitaxial growth on a Si(001) surface by ultrahigh-vacuum molecular beam epitaxy was investigated. Epitaxial orientation and crystalline quality were characterized based on the three-dimensional reciprocal map obtained by Weissenberg RHEED. The epitaxial orientation and crystallinity were strongly dependent on the initial condition of the substrate. When MgO was deposited on a clean Si(001) surface at room temperature a MgO(001) film grew on the Si(001) substrate with two in-plane orientations:MgO[110]//Si[100] and MgO[100]//Si[100]. This is the first observation of MgO epitaxy with the former orientation, which has a smaller mismatch than the latter orientation. When the substrate was exposed to O2 or thermally oxidized, the latterorientation predominantly grew on the substrate. Deposition of Mg on the substrate also produced the latter orientation. These results imply that nucleation sites on the initial substrate play an important role in determining the epitaxial orientation.  相似文献   

14.
Time-resolved,in-situ-applied STM has been used to study the epitaxial growth of iron on W(110) at room temperature. By this way, sequences of STM images show directly the atomistics of the growth process on the surface. The first layer of iron on W(110) grows pseudomorphically without a preferred growth direction. Beginning with the second layer, the islands grow anisotropically with preferred growth in the [001]-direction. The generation of an ordered two-dimensional dislocation network starts at a coverage of 1.4 pseudomorphic monolayers to relax the misfit of 9.4%. A direct correlation of the creation of misfit dislocations in the second layer and the nucleation of the third-layer islands was found. Together with the onset of strain relaxation, the growth mode abruptly changes from layer-by-layer to statistical growth. A quantitative statistical analysis of the data allows to exactly determine the onset of relaxation, the vertical location of the dislocation lines, and the lateral extension of an island that is necessary to induce the formation of dislocations.  相似文献   

15.
The geometric and electronic structures of Fe islands on MgO film layers were studied with scanning tunneling microscopy and spectroscopy. The MgO layers were grown on a Nb-doped single crystal SrTiO3 (100) surface. Deposited Fe atoms aggregate into islands, the height and diameter of which are about 2.5 and 9.4 nm respectively. Fe islands modify the electronic structure of MgO surface; a ring type depression in the scanning tunneling microscope topography appears by lowered local electron density of states around Fe islands. We find that adsorbed Fe atoms reduce the gap states of MgO layers around Fe islands, which is attributed to the reason for the depletion of the electronic density of states.  相似文献   

16.
In this paper, the impact of growth parameters on the strain relaxation of highly lattice mismatched (11.8%) GaSb grown on GaP substrate by molecular beam epitaxy has been investigated. The surface morphology, misfit dislocation and strain relaxation of the GaSb islands are shown to be highly related to the initial surface treatment, growth rate and temperature. More specifically, Sb-rich surface treatment is shown to promote the formation of Lomer misfit dislocations. Analysis of the misfit dislocation and strain relaxation as functions of the growth temperature and rate led to an optimal growth window for a high quality GaSb epitaxial layer on (001) GaP. With this demonstrated optimized growth, a high mobility (25?500?cm(2)?V (-1)?s(-1) at room temperature) AlSb/InAs heterostructure on a semi-insulating (001) GaP substrate has been achieved.  相似文献   

17.
The 6-period stacked layers of self-assembled InAs quasi-quantum wires(qQWRs) and quantum dots(QDs) embedded into InAlAs on InP(001) substrates have been prepared by solid molecular beam epitaxy. The structures are characterized by atomic force microscopy(AFM) and transmission electron microscopy(TEM). From AFM we have observed for the first time that InAs qQWRs and QDs coexist, and we explained this phenomenon from the view of the energy related to the islands. Cross-sectional TEM shows that InAs qQWRs are vertically aligned every other layer along the growth direction [001], which disagrees with conventional vertical self-alignment of InAs QDs on GaAs substrate.  相似文献   

18.
The adsorption and diffusion of Pd monomers and dimers on the (001) surfaces of strongly correlated nickel oxides were investigated using density functional theory combined with the on-site Coulomb repulsion U. The results were compared with those of Pd on nonmagnetic MgO(001). For the Pd monomer, the most stable adsorption site was found to be near the surface O atom. The surface diffusion of the Pd monomer occurred by a hopping process over surface hollow sites. The diffusion energy barrier was 0.21 eV, which was lower than that for Pd on MgO(001). In the case of the Pd dimer, the smallest and stable cluster, the most stable adsorption structure had a flat geometry, with both Pd atoms sitting above the neighboring surface O atoms. The surface diffusion of the Pd dimer occurred by rotational and sliding processes, in contrast to that of the Pd dimer on MgO(001). The diffusion energy barriers ranged from 0.33 to 0.36 eV. The values for the surface diffusion of Pd dimers on NiO(001) were lower than those of Pd on MgO(001). This suggests that Pd dimers move more rapidly on NiO(001) than on MgO(001), and that the sintering of Pd clusters closely related to catalytic activities can occur more easily compared to that of Pd on MgO(001).  相似文献   

19.
A study has been carried out on the morphology and structure of three-dimensional (3D) SiGe islands grown by molecular beam epitaxy (MBE) on Si(100) substrates. Samples of Si1-xGex alloys have been prepared to investigate the effects either of the alloy composition or of the growth temperature. Atomic force microscopy (AFM) evidenced the growth of 3D islands and transmission electron microscopy (TEM) demonstrated wetting layer growth on Si(100), independently on the deposition conditions. Energy dispersive spectroscopy (EDS) micro-analyses carried out on cross-sections of large Si1-xGex islands with defects allowed a measurement of the Ge distribution in the islands. To the best of our knowledge, these have been the first experimental evidences of a composition change inside SiGe islands. The interpretation of the experimental results has been done in terms of strain-enhanced diffusion mechanisms both of the growing species (Si and Ge) and of small islands.  相似文献   

20.
We describe the MBE growth and structural characterization of ultrathin layers of epitaxial MgO on CrxMO1−x (x ≈ 0.65 ). The metal alloy was grown as an epitaxial film on high-quality MgO(001) substrates. This kind of epitaxy produces unstrained MgO surfaces of very high structural quality on a conducting substrate. Such materials will enable definitive investigations of surface structure and reactivity using charged-particle spectroscopy, diffraction, and imaging. The role of lattice matching is discussed and shown to be very important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号