首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Studies of the stoichiometry and kinetics of the reaction between hydroxylamine and iodine, previously studied in media below pH 3, have been extended to pH 5.5. The stoichiometry over the pH range 3.4–5.5 is 2NH2OH + 2I2 = N2O + 4I? + H2O + 4H+. Since the reaction is first-order in [I2] + [I3?], the specific rate law, k0, is k0 = (k1 + k2/[H+]) {[NH3OH+]0/(1 + Kp[H+])} {1/(1 + KI[I?])}, where [NH3OH+]0 is total initial hydroxylamine concentration, and k1, k2, Kp, and KI are (6.5 ± 0.6) × 105 M?1 s?1, (5.0 ± 0.5) s?1, 1 × 106 M?1, and 725 M?1, respectively. A mechanism taking into account unprotonated hydroxylamine (NH2OH) and molecular iodine (I2) as reactive species, with intermediates NH2OI2?, HNO, NH2O, and I2?, is proposed.  相似文献   

2.
The oxidation of ethylenediamine by diperiodatoargentate (III) ion has been studied by stopped‐flow spectrophotometry. Kinetics of this reaction involves two steps. The first step is the complexation of silver (III) with the substrate and is over in about 10 ms. This is followed by a redox reaction in the second step that occurs intramolecularly from the substrate to the silver (III) center. The rate of reduction of silver (III) species by ethylenediamine, ethanolamine, and 1,2‐ethanediol were observed to be 1.2 × 104, 1.1 × 102, and 0.14 dm3 mol−1 s−1, respectively, at 20°C. The reaction rate shows an inverse dependence on [IO] and [OH] in the low concentration range (≤1 × 10‐3 mol dm−3). At higher [OH] (>1 × 10−3 mol dm−3) the rate of reaction starts increasing and attains a limiting value at very high [OH]. The rate of deamination of ethylenediamine is enhanced by its complexation with silver (III). The involvement of [AgIII(H2IO6) (H2O)2] and [AgIII(H2IO6) (OH)2]2− are suggested as the reactive silver (III) species kinetically in mild basic and basic conditions, respectively. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 286–293, 2000  相似文献   

3.
Under Ammonia chemical Ionization conditions the source decompositions of [M + NH4]+ ions formed from epimeric tertiary steroid alchols 14 OHβ, 17OHα or 17 OHβ substituted at position 17 have been studied. They give rise to formation of [M + NH4? H2O]+ dentoed as [MHsH]+, [MsH? H2O]+, [MsH? NH3]+ and [MsH? NH3? H2O]+ ions. Stereochemical effects are observed in the ratios [MsH? H2O]+/[MsH? NH3]+. These effects are significant among metastable ions. In particular, only the [MsH]+ ions produced from trans-diol isomers lose a water molecule. The favoured loss of water can be accounted for by an SN2 mechanism in which the insertion of NH3 gives [MsH]+ with Walden inversion occurring during the ion-molecule reaction between [M + NH4]+ + NH3. The SN1 and SNi pathways have been rejected.  相似文献   

4.
《Analytical letters》2012,45(6):1010-1021
Abstract

A carbon paste electrode modified with cobalt phthalocyanine (CPECoPc) was developed and applied to the determination of hydrazine [N2H4] in industrial boiler feed water. The CPECoPc exhibited good electrocatalytical activity for hydrazine oxidation at pH 13. A linear correlation was obtained between anodic peak current (Iap) and hydrazine concentration in the range of 1.25 × 10?4 to 9.80 × 10?4 mol L?1, fit by the equation Iap = 1.47 + 4.90 × 105 [N2H4] with a correlation coefficient of 0.9967. A detection limit of 7.35 × 10?5 mol L?1 was obtained. Recovery of hydrazine from three samples ranged between 99.0% and 102.9%. The modified electrode showed no interference by cations commonly present in boiler water, such as K+, Na+, Ca2+, Mg2+, Al3+, Pb2+, and Zn2+. The results obtained for hydrazine in boiler water using the proposed modified electrode are in agreement with the data obtained by a standard spectrophotometric method, at the 95% confidence level.  相似文献   

5.
The copper(II)—l-carnosine (L) system has been re-investigated in aqueous solution, at I = 0.1 mol dm−1, different temperatures (5⩽t⩽45°C) and with metal to ligand ratios ranging from 3:1 to 1:3. Both potentiometry and visible spectrophotometry were employed. From an overall consideration of all experiments, [CuLH]2+, [CuL]+, [CuLH−1]°, [Cu2L2H−2]° and [Cu2LH−1]2+ were recognized as the species which provide the best interpretation of experimental data. The complex formation constants, determined at different temperatures, allowed us to obtain reliable values of ΔH° and good estimates of ΔC°p. From visible spectrophotometric measurements, carried out at different pH and metal to ligand ratios, it was possible to calculate the electronic spectrum of each complex formed in solution. A structure is also proposed for each species, on the basis of thermodynamic and spectral results.  相似文献   

6.
Two chemosensors 4H‐1‐benzopyran‐3‐carboxaldehyde, 4‐oxo‐, 3‐(2‐phenylhydrazone), [I1] and 4H‐1‐benzopyran‐3‐carboxaldehyde, 4‐oxo‐, 3‐[2‐(2,4‐dinitrophenyl)hydrazone], [I2] with hydrazone‐NH group as binding site have been shown excellent selectivity for arsenite ion. It is confirmed by the UV‐vis titration that I2 is more selective than I1. The performance of the coated graphite electrode (CGE) was found to be better than polymeric membrane electrode (PME) in terms of linear range of 4.89×10?7–1.0×10?1 mol L?1, low detection limit of 8.31×10?8 mol L?1 and short response time. The proposed sensors were also used to determine the arsenite ion in different water samples.  相似文献   

7.
Base hydrolysis reactions of [Cr(tmpa)(NCSe)]2O2+, [Cr(tmpa)(N3)]2O2+, [Cr2(tmpa)2(μ−O)(μ−PhPO4)]4+ and [Cr2(tmpa)2(μ−O)(μ−CO3)]2+ follow the pseudo‐first‐order relationship (excess OH): kobsd=ko+kbQp[OH]/(1+Qp[OH]). For the CO32− complex, kb(60°C)=(1.50±0.03)×10−2 s−1; ΔH‡=61±2 kJ/mol, ΔS‡=−99±7 J/mol K; Qp(60°C)=(3.8±0.3)×101 M−1; ΔH°=67±2 kJ/mol, ΔS°=230±7 J/mol K (I=1.0 M). An isokinetic relationship among kOH(=kbQp) activation parameters for five (tmpa)CrOCr(tmpa) complexes shows that all follow essentially the same pathway. Activated complex formation is thought to require nucleophilic attack of coordinated OH at the chromium‐leaving group bond in the kb step, accompanied by reattachment of a tmpa pyridyl arm displaced by OH in the Qp preequilibrium. Abstraction of both thiocyanate ligands was observed upon mixing [Cr(tmpa)(NCS)]2O2+ with [Pd(CH3CN)4]2+ in CH3CN solution. The proposed mechanism requires rapid complexation of both reactant thiocyanate ligands by Pd(II) (Kp(25°C)=(4.5±0.2)×108 M−2; ΔH°=−32±6 kJ/mol, ΔS°=59±19 J/mol K) prior to rate‐limiting Cr NCS bond‐breaking (k2(25°C)=(1.17±0.02)×10−3 s−1; ΔH‡=98±2 kJ/mol, ΔS‡=27±5 J/mol K). Pd(II)‐assisted NCS abstraction is not driven by weakening of the Cr( )NCS bond through ligation of the sulfur atom to palladium, but rather by a favorable ΔS‡ resulting from the release of Pd(NCS)+ fragments and weak solvation of the activated complex in CH3CN solution. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 351–356, 1999  相似文献   

8.
Reactions of iron(II) and iron(III) salts with tri-p-tolylarsine oxide(L) in suitable organic solvents yield complexes of formulas: (i) [FeL2Cl2(OH2)2] [FeCl4].2H2O, [FeL2Br2] [FeBr4].2H2O; (ii) [Fe(NCS)3L2].H2O; (iii) [FeL(O2ClO2)2(OH2)] (ClO4).0.25C6H6; (iv) [FeL3I] [FeI3].H2O and (v) [Fe(CO)3LI]I. Characterization has been done through elemental analyses, IR, far IR, ESR, and reflectance spectra, molar conductance, magnetic moments, t.g.a. and X-ray diffraction (powder) data. The species [FeL2Cl2(OH2)2]+, [FeL2Br2]+, [Fe(NCS)3L2], [FeL(O2ClO2)2OH2]+, [FeL3I]+ and [Fe(CO)3LI]+ have been assigned trans-octahedral, trans-square planar, trans-trigonal bipyramid, trans-octahedral, tetrahedral and cis-trigonal bipyramid structures respectively.  相似文献   

9.
The kinetics and mechanisms of the reactions of aluminium(III) with pentane-2,4-dione (Hpd), 1,1,1-trifluoro pentane-2,4-dione (Htfpd) and heptane-3,5-dione (Hhptd) have been investigated in aqueous solution at 25°C and ionic strength 0.5 mol dm−3 sodium perchlorate. The kinetic data are consistent with a mechanism in which aluminium(III) reacts with the β-diketones by two pathways, one of which is acid independent while the second exhibits a second-order inverse-acid dependence. The acid-independent pathway is ascribed to a mechanism in which [Al(H2O)6]3+ reacts with the enol tautomers of Hpd, Htfpd, and Hhptd with rate constants of 1.7(±1.3)×10−2, 0.79(±0.21), and 7.5(±1.6)×10−3 dm3 mol−1 s−1, respectively. The inverse acid pathway is consistent with a mechanism in which [Al(H2O)5(OH)]2+ reacts with the enolate ions of Hpd, Htfpd, and Hhptd with rate constants of 4.32(±0.18)×106, 5.84(±0.24)×103, and 1.67(±0.05)×107 dm3 mol−1 s−1, respectively. An alternative formulation involves a pathway in which [Al(H2O)4(OH)2]+ reacts with the protonated enol tautomers of the ligands. This gives rate constants of 2.79(±0.12)×104, 3.86(±0.16)×105, and 8.98(±0.25)×103 dm3 mol−1 s−1 for reaction with Hpd, Htfpd, and Hhptd, respectively. Consideration of the kinetic data reported here together with data from the literature, suggest that [Al(H2O)5(OH)]2+ reacts by an associative or associative-interchange mechanism. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 257–266, 1998.  相似文献   

10.
Summary The reaction of aqueous solutions of 3d metal salts with bis(hydroxylammonium) bicyclo[2.2.1]-hept-5-en-endo-2,3-cis-dicarboxylate in a 12 mole ratio yielded complexes of the general formula [MnL2(NH3OH)2]·nH2O and [FeIIIL2(NH3OH)H2O]·H2O, where MII=Mn, Fe, Co, Ni, Cu and Zn, and L=bicyclo[2.2.1]-hept-5-en-endo-2,3-cis-dicarboxylate dianion.The compounds were characterized by i.r. spectra and thermal analysis. For all complexes, an octahedral structure is proposed which is formed bytrans coordination of two bidentate (OO) ligands (L) and two NH3OH+ cations attrans positions, coordinated also through oxygen atoms; and similarlytrans positions for NH3OH+ and H2O in the case of the FeIII complex.  相似文献   

11.
This work presents the kinetic study of the decomposition in NaOH medium of mercury jarosite whose approximate formula is [Hg0.39(H3O)0.22]Fe2.71(SO4)2.17(OH)4.79(H2O)2.09. The reaction progress takes place on the surface of the compound with diffusion of the hydroxyl ions (OH) from the solution to the particle surface moving the reaction front toward the interior of the particle, with the release of ions SO42− and Hg2+ from the core to the reaction medium. The decomposition curve can be described by three kinetics stages: an induction period followed by a progressive conversion period and ending the reaction in the stabilization zone. The results of X−ray diffraction showed that as the decomposition reaction progresses the partially decomposed solids lost its crystallinity ending as amorphous solids. For the induction period, the reaction order (n ) was 0.52 for [OH] < 0.0187 mol L−1 and when [OH] > 0.0187 mol L−1 n = 1.48, whereas the calculated activation energy (Ea ) was 81.7 kJ mol−1. For the progressive conversion period n = 0.99 for [OH] > 0.0057 mol L−1 and for lower concentrations n ≈ 0, with Ea = 56.9 kJ mol−1, confirming that the decomposition process is controlled by the chemical reaction. Based on the calculated kinetic parameters, the partial and global kinetic expressions of the decomposition process were proposed. These models were compared with the experimental results, and it was favorably proven and described the decomposition process of the mercury jarosite in alkaline medium.  相似文献   

12.
NH4[Re3Cl10(OH2)2] · 2 H2O: Synthesis and Structure. An Example for “Strong” N? H …? O and O? H …? Cl Hydrogen Bonding The red NH4[Re3Cl10(OH2)2] · 2 H2O crystallizes from hydrochloric-acid solutions of ReCl3 with NH4Cl. It is tetragonal, P41212, No. 92, a = 1157.6, c = 1614.5 pm, Z = 4. The crystal structure contains “isolated” clusters [Re3Cl10(OH2)2]?. These contain Cl…?H? O? H…?Cl units with “very strong” hydrogen bonds: distances Cl? O are only 286 pm. NH4+ has seven Cl? as nearest neighbours and, additionally, one H2O which belongs to a cluster [d(N? O1) = 271 pm] and one crystal water [d(N? O2) = 286 pm].  相似文献   

13.
New complexes of type [Cu(L1)2(OH2)]·4H2O (1), [Cu(L2)(OH2)]·0.5H2O (2) and [Cu3(L3)2(OH2)3]·0.5H2O (3) were synthesized by [1 + 1], [1 + 2] and [1 + 3], respectively, template condensation of 2,4,6-triamino-1,3,5-triazine and salicylic aldehyde in the presence of copper(II). The features of complexes have been established from microanalytical, IR and UV–Vis data. The thermal analyses have evidenced the thermal intervals of stability and also the accompanying thermodynamic effects. Processes as water elimination and oxidative degradation of the organic ligands were observed. After water elimination, complexes revealed a similar thermal behaviour. The final product of decomposition was copper(II) oxide as powder X-ray diffraction indicated.  相似文献   

14.
The kinetics of L-lysine anation of aquachromium(III) ions have been investigated in the acidity range 5.6 ≤ 105[H+] ≤ 31.6 mol dm. The reaction takes place with outer-sphere association between Cr3+/CrOH2+ and H2L+ (L =+HGCH (+NH3)(CO 2 t- ), G being the side chain) followed by transformation of the outer-into an inner-sphere complex by slow interchange. The results are discussed in relation to the data of analogous systems and it is concluded that anation of [Cr(H2O)6]3 + follows anI a path whereas that of [Cr(H2O)5OH]2 + follows anI d path.  相似文献   

15.
《Chemical physics letters》1986,127(4):347-353
Infrared multiphoton photooxidation of NH2D in NH3 mixtures was observed to produce exclusively HDO, suggesting a single step deuterium separation efficiency of [D2O]/([D20]+[H2O]) ⩾ 50% which is significantly higher than that of the theoretical value, 33%. The results are explained by the large rate differences in the radical scavenging steps, i.e. k(D+O2) = 2.2 × 109M−1 s−1, k(NH2+O2) ⩽ 5 × 106 M−1 s−1 and k(NH2+NH2)=1.6 × 1010 M−1 s−1. With Ti solid powder as a catalyst, we observed that the formation yields of HDO are at least three to four times higher than those without a catalyst.  相似文献   

16.
The synthesis, reduction, optical and e.p.r. spectral properties of a series of new binuclear copper(II) complexes, containing bridging moieties (OH, MeCO2 , NO2 , and N3 ), with new proline-based binuclear pentadentate Mannich base ligands is described. The ligands are: 2,6-bis[(prolin-1-yl)methyl]4-bromophenol [H3L1], 2,6-bis[(prolin-1-yl)methyl]4-t-butylphenol [H3L2] and 2,6-bis[(prolin-1-yl)methyl]4-methoxyphenol [H3L3]. The exogenous bridging complexes thus prepared were hydroxo: [Cu2L1(OH)(H2O)2] · H2O (1a), [Cu2L2(OH)(H2O)2] · H2O (1b), [Cu2L3(OH)(H2O)2] · H2O (1c), acetato [Cu2L1(OAc)] · H2O (2a), [Cu2L2(OAc)] · H2O (2b), [Cu2L3(OAc)] · H2O (2c), nitrito [Cu2L1(NO2)(H2O)2] · H2O (3a), [Cu2L2(NO2)(H2O)2] · H2O (3b), [Cu2L3(NO2)(H2O)2] · H2O (3c) and azido [Cu2L1(N3)(H2O)2] · H2O (4a), [Cu2L2(N3)(H2O)2] · H2O (4b) and [Cu2L3(N3)(H2O)2] · H2O (4c). The complexes were characterized by elemental analysis and by spectroscopy. They exhibit resolved copper hyperfine e.p.r. spectra at room temperature, indicating the presence of weak antiferromagnetic coupling between the copper atoms. The strength of the antiferromagnetic coupling lies in the order: NO2 N3 OH OAc. Cyclic voltammetry revealed the presence of two redox couples CuIICuII CuIICuI CuICuI. The conproportionality constant K con for the mixed valent CuIICuI species for all the complexes have been determined electrochemically.  相似文献   

17.
To understand the structural and thermal properties of the mixed crystals, thermogravimetric (TG) and differential thermal analysis (DTA), and FTIR and Raman spectral studies were carried out for the mixed crystals of Zna/Mgb ammonium sulfate of composition namely 'a' (fraction by mass of salt Zn[NH4]2[SO4]2·6H2O to the total salt (both Zn[NH4]2[SO4]2·6H2O, Mg[NH4]2[SO4]2·6H2O or it can be explained as ZnaMgb[NH4]2[SO4]2·6H2O, a + b =1), and a = 0.1, 0.25, 0.333, 0.5, 0.666, 0.75 and 0.9 grown by a solution technique. From the correlation and analysis of the results obtained for the various crystals, the desolvation, decomposition, crystalline transition phenomena were identified. By close comparison of the endotherms, obtained for the various crystals, it was found that isomorphous substitution takes place in the crystals. Up to 0.5, Zn2+ ion replaces isomorphous Mg2+ ions in the lattice sites of Mg[NH4]2[SO4]2·6H2O and above 0.5, Mg2+ ions occupies the Zn2+ ion in the lattice sites of Zn[NH4]2[SO4]2·6H2O. Both crystals belong to monoclinic system with P 2(1)/a symmetry. The vibrations of NH4 + ion, SO4 2- ion, the complex [Mg(OH2)6]2+ the complex [Zn(OH2)6]2+ and the three different water molecules are identified. The linear distortion of SO4 2- ion is found to be greater than its angular distortion, while the NH4 + ion has suffered more angular distortion. The possibility of free rotation of the NH4 + ion is ruled out.  相似文献   

18.
By combining results from a variety of mass spectrometric techniques (metastable ion, collisional activation, collision-induced dissociative ionization, neutralization-reionization spectrometry, 2H, 13C and 18O isotopic labelling and appearance energy measurements) and high-level ab initio molecular orbital calculations, the potential energy surface of the [CH5NO]+ ˙ system has been explored. The calculations show that at least nine stable isomers exist. These include the conventional species [CH3ONH2]+ ˙ and [HO? CH2? NH2]+ ˙, the distonic ions [O? CH2? NH3]+ ˙, [O? NH2? CH3]+ ˙, [CH2? O(H)? NH2]+ ˙, [HO? NH2? CH2]+ ˙, and the ion-dipole complex CH2?NH2+ …? OH˙. Surprisingly the distonic ion [CH2? O? NH3]+ ˙ was found not to be a stable species but to dissociate spontaneously to CH2?O + NH3+ ˙. The most stable isomer is the hydrogen-bridged radical cation [H? C?O …? H …? NH3]+ ˙ which is best viewed as an immonium cation interacting with the formyl dipole. The related species [CH2?O …? H …? NH2]+ ˙, in which an ammonium radical cation interacts with the formaldehyde dipole is also a very stable ion. It is generated by loss of CO from ionized methyl carbamate, H2N? C(?O)? OCH3 and the proposed mechanism involves a 1,4-H shift followed by intramolecular ‘dictation’ and CO extrusion. The [CH2?O …? H …? NH2]+ ˙ product ions fragment exothermically, but via a barrier, to NH4+ ˙ HCO…? and to H3N? C(H)?O+ ˙ H˙. Metastable ions [CH3ONH2]+…? dissociate, via a large barrier, to CH2?O + NH3+ + and to [CH2NH2]+ + OH˙ but not to CH2?O+ ˙ + NH3. The former reaction proceeds via a 1,3-H shift after which dissociation takes place immediately. Loss of OH˙ proceeds formally via a 1,2-CH3 shift to produce excited [O? NH2? CH3]+ ˙, which rearranges to excited [HO? NH2? CH2]+ ˙ via a 1,3-H shift after which dissociation follows.  相似文献   

19.
Transition Metal Complexes Containing the Ligands Pyrazine-2, 6-dicarboxylate and Pyridine-2, 6-dicarboxylate: Syntheses and Electrochemistry. Crystal Structure of NH4[RuCl2(dipicH)2] The coordination chemistry of the tridentate ligand pyrazine-2, 6-dicarboxylate (pyraz-2,6 = L) with transition metals in aqueous solution has been investigated. The reaction of the ligand with metal aqua ions (1:1) affords insoluble precipitates [MIIL(OH2)2] (M = Mn, Fe, Co, Ni, Cu, Zn, Cd). [TiOL(OH2)2], [VOL(H2O)2] and [UO2L(H2O)] were also prepared. [MIIIL2]? complexes (MIII ? FeIII, CoIII) were isolated as NH4+ and P(C6H5)4+ salts; they are strong one electron oxidants (E1/2 = +0.602 V and +0.795 V vs. NHE, respectively). Redox potentials of analogous complexes containing pyridine- 2, 6-dicarboxylate (L′) ligands have been determined by cyclic voltammetry: [ML′2]1-/2?: M = VIII: -0.591 V; CrIII: -0.712 V. It is shown that pymzine-2,6-dicarboxylate as compared to pyridine-2,6-dicarboxylate stabilizes metal complexes in low oxidation states (+II). The reaction of RuCl3 · nH2O with pyridine-2,6-dicarboxylic acid in aqueous solution affords the yellow-green anion [RuCl2(L′H)2]?. The crystal structure of NH4[RuCl2(L′H)2] has been determined. It crystallizes in the monoclinic space group P21/c with a = 8.812(2) Å b = 10.551(2) Å, c = 10.068(2) Å, β = 110.03(6)°, Z = 2; 2507 independent reflections; R = 0.032. The ruthenium centers are in an octahedral environment of two Cl? ligands (trans) and two bidentate pyridine-2, 6-hydrogendicarboxylate ligands which possess each one protonated, uncoordinated carboxylic group.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号