首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
An unfactored implicit time-marching method for the solution of the unsteady two-dimensional Reynolds-averaged thin layer Navier–Stokes equations is presented. The linear system arising from each implicit step is solved by the conjugate gradient squared (CGS) method with preconditioning based on an ADI factorization. The time-marching procedure has been used with a fast transfinite interpolation method to regenerate the mesh at each time step in response to the motion of the aerofoil. The main test cases examined are from the AGARD aeroelastic configurations and involve aerofoils oscillating rigidly in pitch. These test cases have been used to investigate the effect of various parameters, such as CGS tolerance and laminar/turbulent transition location, on the accuracy and efficiency of the method. Comparisons with available experimental data have been made for these cases. In order to illustrate the application of the mesh generator and flow solver to more general flows where the aerofoil deforms, results for an NACA 0012 aerofoil with an oscillating trailing edge flap are also shown.  相似文献   

2.
A complete boundary integral formulation for incompressible Navier–Stokes equations with time discretization by operator splitting is developed using the fundamental solutions of the Helmholtz operator equation with different order. The numerical results for the lift and the drag hysteresis associated with a NACA0012 aerofoil oscillating in pitch show good agreement with available experimental data. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
The mechanism of the origin of shock oscillations on NACA0012 aerofoils is investigated using a moving grid thin layer Navier Stokes code. The method used to understand the mechanism is to initiate the shock oscillations on an aerofoil by moving the aerofoil from a regime of steady transonic flow into a regime of periodic flow by a change in airflow incidence. The results indicate that the shock induced bubble plays a leading role in the origin of shock oscillations and the trailing edge has an affect on its amplitude. Received 1 April 1997 / Accepted 1 December 1997  相似文献   

4.
An alternative discretization of pressure‐correction equations within pressure‐correction schemes for the solution of the incompressible Navier–Stokes equations is introduced, which improves the convergence and robustness properties of such schemes for non‐orthogonal grids. As against standard approaches, where the non‐orthogonal terms usually are just neglected, the approach allows for a simplification of the pressure‐correction equation to correspond to 5‐point or 7‐point computational molecules in two or three dimensions, respectively, but still incorporates the effects of non‐orthogonality. As a result a wide range (including rather high values) of underrelaxation factors can be used, resulting in an increased overall performance of the underlying pressure‐correction schemes. Within this context, a second issue of the paper is the investigation of the accuracy to which the pressure‐correction equation should be solved in each pressure‐correction iteration. The scheme is investigated for standard test cases and, in order to show its applicability to practical flow problems, for a more complex configuration of a micro heat exchanger. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
The unsteady, incompressible, viscous laminar flow over a NACA 0012 airfoil is simulated, and the effects of several parameters investigated. A vortex method is used to solve the two-dimensional Navier–Stokes equations in the vorticity/stream-function form. By applying an operator-splitting method, the “convection” and “diffusion” equations are solved sequentially at each time step. The convection equation is solved using the vortex-in-cell method, and the diffusion equation using a second-order ADI finite difference scheme. The airfoil profile is obtained by mapping a circle in the computational domain into the physical domain through a Joukowski transformation. The effects of several parameters are investigated, such as the reduced frequency, mean angle of attack, location of pitch axis, and the Reynolds number. It is observed that the reduced frequency has the most influence on the flow field.  相似文献   

6.
An algorithm, based on the overlapping control volume (OCV) method, for the solution of the steady and unsteady two‐dimensional incompressible Navier–Stokes equations in complex geometry is presented. The primitive variable formulation is solved on a non‐staggered grid arrangement. The problem of pressure–velocity decoupling is circumvented by using momentum interpolation. The accuracy and effectiveness of the method is established by solving five steady state and one unsteady test problems. The numerical solutions obtained using the technique are in good agreement with the analytical and benchmark solutions available in the literature. On uniform grids, the method gives second‐order accuracy for both diffusion‐ and convection‐dominated flows. There is little loss of accuracy on grids that are moderately non‐orthogonal. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a numerical simulation of steady two‐dimensional channel flow with a partially compliant wall. Navier–Stokes equation is solved using an unstructured finite volume method (FVM). The deformation of the compliant wall is determined by solving a membrane equation using finite difference method (FDM). The membrane equation and Navier–Stokes equation are coupled iteratively to determine the shape of the membrane and the flow field. A spring analogy smoothing technique is applied to the deformed mesh to ensure good mesh quality throughout the computing procedure. Numerical results obtained in the present simulation match well with that in the literature. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
An improved hybrid method for computing unsteady compressible viscous flows is presented. This method divides the computational domain into two zones. In the inner zone, the Navier–Stokes equations are solved using a diagonal form of an alternating‐direction implicit (ADI) approximate factorisation procedure. In the outer zone, the unsteady full‐potential equation (FPE) is solved. The two zones are tightly coupled so that steady and unsteady flows may be efficiently solved. Characteristic‐based viscous/inviscid interface boundary conditions are employed to avoid spurious reflections at that interface. The resulting CPU times are about 60% of the full Navier–Stokes CPU times for unsteady flows in non‐vector processing machines. Applications of the method are presented for a F‐5 wing in steady and unsteady transonic flows. Steady surface pressures are in very good agreement with experimental data and are essentially identical to the full Navier–Stokes predictions. Density contours show that shocks cross the viscous/inviscid interface smoothly, so that the accuracy of full Navier–Stokes equations can be retained with significant savings in computational time. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
Time‐dependent incompressible Navier–Stokes equations are formulated in generalized non‐inertial co‐ordinate system and numerically solved by using a modified second‐order Godunov‐projection method on a system of overlapped body‐fitted structured grids. The projection method uses a second‐order fractional step scheme in which the momentum equation is solved to obtain the intermediate velocity field which is then projected on to the space of divergence‐free vector fields. The second‐order Godunov method is applied for numerically approximating the non‐linear convection terms in order to provide a robust discretization for simulating flows at high Reynolds number. In order to obtain the pressure field, the pressure Poisson equation is solved. Overlapping grids are used to discretize the flow domain so that the moving‐boundary problem can be solved economically. Numerical results are then presented to demonstrate the performance of this projection method for a variety of unsteady two‐ and three‐dimensional flow problems formulated in the non‐inertial co‐ordinate systems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
采用混合网格求解紊流Navier Stokes方程。在物面附近采用柱状网格 ,其他区域则采用完全非结构网格。方程的求解采用Jamson的有限体积法 ,紊流模型采用两层Baldwin Lomax代数紊流模型。用各向异性多重网格法来加速解的收敛。数值算例表明 ,用混合网格及各向异性多重网格求解紊流流动是非常有效的  相似文献   

11.
A Chebyshev collocation method for solving the unsteady two-dimensional Navier–Stokes equations in vorticity–streamfunction variables is presented and discussed. The discretization in time is obtained through a class of semi-implicit finite difference schemes. Thus at each time cycle the problem reduces to a Stokes-type problem which is solved by means of the influence matrix technique leading to the solution of Helmholtz-type equations with Dirichlet boundary conditions. Theoretical results on the stability of the method are given. Then a matrix diagonalization procedure for solving the algebraic system resulting from the Chebyshev collocation approximation of the Helmholtz equation is developed and its accuracy is tested. Numerical results are given for the Stokes and the Navier–Stokes equations. Finally the method is applied to a double-diffusive convection problem concerning the stability of a fluid stratified by salinity and heated from below.  相似文献   

12.
A new approach using the Level-Set framework is developed in the NSMB (Navier–Stokes-multi-block) compressible solver for modeling the ice/air interface evolution through time during in-flight icing. Droplet distribution and impingement efficiency are computed by an Eulerian approach and the accreted ice is calculated by a PDE model. An icing velocity field is introduced and the Level-Set equations are solved on body-fitted multi-block structured grids. The whole process is parallelized with the MPI library for efficient calculations. Single step icing is simulated on NACA23012 and NACA0012 airfoils and on the ONERA-M6 and the GLC-305 swept wings. In all the studied cases, the results are in good agreement with existing and available data validating the feasibility of the approach.  相似文献   

13.
The Godunov‐projection method is implemented on a system of overlapping structured grids for solving the time‐dependent incompressible Navier–Stokes equations. This projection method uses a second‐order fractional step scheme in which the momentum equation is solved to obtain the intermediate velocity field which is then projected on to the space of divergence‐free vector fields. The Godunov procedure is applied to estimate the non‐linear convective term in order to provide a robust discretization of this terms at high Reynolds number. In order to obtain the pressure field, a separate procedure is applied in this modified Godunov‐projection method, where the pressure Poisson equation is solved. Overlapping grids are used to discretize the flow domain, as they offer the flexibility of simplifying the grid generation around complex geometrical domains. This combination of projection method and overlapping grid is also parallelized and reasonable parallel efficiency is achieved. Numerical results are presented to demonstrate the performance of this combination of the Godunov‐projection method and the overlapping grid. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
A parallel finite volume method for the Navier–Stokes equations with adaptive hybrid prismatic/tetrahedral grids is presented and evaluated in terms of parallel performance. A new method of domain partitioning for complex 3D hybrid meshes is also presented. It is based on orthogonal bisection of a special octree corresponding to the hybrid mesh. The octree is generated automatically and can handle any type of 3D geometry and domain connectivity. One important property of the octree-based partitioning that is exploited is the octree's ability to yield load-balanced partitions that follow the shape of the geometry. This biasing of the octree results in a reduced number of grid elements on the interpartition boundaries and thus fewer data to communicate among processors. Furthermore, the octree-based partitioning gives similar quality of partitions for very different geometries, while requiring minimal user interaction and little computational time. The partitioning method is evaluated in terms of quality of the subdomains as well as execution time. Viscous flow simulations for different geometries are employed to examine the effectiveness of the octree-based partitioning and to test the scalability of parallel execution of the Navier–Stokes solver and hybrid grid adapter on two different parallel systems, the Intel Paragon and the IBM SP2. © 1998 John Wiley & Sons, Ltd.  相似文献   

15.
A fast cosine transform (FCT) is coupled with a tridiagonal solver for the purpose of solving the Poisson equation on irregular and non‐uniform rectangular staggered grids. This kind of solution is required for the pressure field during the simulation of the incompressible Navier–Stokes equations when using the projection method. A new technique using the FCT–tridiagonal solver is derived for the cases where the boundaries of the flow regime do not coincide with the boundaries of the computational domain and for non‐uniform grids. The technique is based on an iterative procedure where a defect equation is solved in every iteration, followed by a relaxation procedure. The method is investigated analytically and numerically to show that the solution converges as a geometric series. The method is further investigated for the effects of the relative size of the rigid body, the grid stretching, size and aspect ratio. The new solver is incorporated with the direct numerical simulation (DNS) and large eddy simulation (LES) techniques to simulate the flows around a backward‐facing step and a 3D rectangular obstacle, yielding results that qualitatively compare well with known results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
We present a method for the parallel numerical simulation of transient three‐dimensional fluid–structure interaction problems. Here, we consider the interaction of incompressible flow in the fluid domain and linear elastic deformation in the solid domain. The coupled problem is tackled by an approach based on the classical alternating Schwarz method with non‐overlapping subdomains, the subproblems are solved alternatingly and the coupling conditions are realized via the exchange of boundary conditions. The elasticity problem is solved by a standard linear finite element method. A main issue is that the flow solver has to be able to handle time‐dependent domains. To this end, we present a technique to solve the incompressible Navier–Stokes equation in three‐dimensional domains with moving boundaries. This numerical method is a generalization of a finite volume discretization using curvilinear coordinates to time‐dependent coordinate transformations. It corresponds to a discretization of the arbitrary Lagrangian–Eulerian formulation of the Navier–Stokes equations. Here the grid velocity is treated in such a way that the so‐called Geometric Conservation Law is implicitly satisfied. Altogether, our approach results in a scheme which is an extension of the well‐known MAC‐method to a staggered mesh in moving boundary‐fitted coordinates which uses grid‐dependent velocity components as the primary variables. To validate our method, we present some numerical results which show that second‐order convergence in space is obtained on moving grids. Finally, we give the results of a fully coupled fluid–structure interaction problem. It turns out that already a simple explicit coupling with one iteration of the Schwarz method, i.e. one solution of the fluid problem and one solution of the elasticity problem per time step, yields a convergent, simple, yet efficient overall method for fluid–structure interaction problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
The main purpose of this article is to develop a forced reduced‐order model based on the proper orthogonal decomposition (POD)/Galerkin projection (on isentropic Navier‐Stokes equations) and perturbation method on the compressible Navier‐Stokes equations. The resulting forced reduced‐order model will be used in optimal control of the separated flow over a NACA23012 airfoil at Mach number of 0.2, Reynolds number of 800, and high incidence angle of 24°. The main disadvantage of the POD/Galerkin projection method for control purposes is that controlling parameters do not show up explicitly in the resulting reduced‐order system. The perturbation method and POD/Galerkin projection on the isentropic Navier‐Stokes equations introduce a forced reduced‐order model that can predict the time varying influence of the controlling parameters and the Navier‐Stokes response to external excitations. An optimal control theory based on forced reduced‐order system is used to design a control law for a nonlinear reduced‐order system, which attempts to minimize the vorticity content in the flow field. The test bed is a laminar flow over NACA23012 airfoil actuated by a suction jet at 12% to 18% chord from leading edge and a pair of blowing/suction jets at 15% to 18% and 24% to 30% chord from leading edge, respectively. The results show that wall jet can significantly influence the flow field, remove separation bubbles, and increase the lift coefficient up to 22%, while the perturbation method can predict the flow field in an accurate manner.  相似文献   

18.
The present study aims to accelerate the convergence to incompressible Navier–Stokes solution. For the sake of computational efficiency, Newton linearization of equations is invoked on non‐staggered grids to shorten the sequence to the final solution of the non‐linear differential system of equations. For the sake of accuracy, the resulting convection–diffusion–reaction finite‐difference equation is solved line‐by‐line using the proposed nodally exact one‐dimensional scheme. The matrix size is reduced and, at the same time, the CPU time is considerably saved due to the decrease of stencil points. The effectiveness of the implemented Newton linearization is demonstrated through computational exercises. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
The numerical method of lines (NUMOL) is a numerical technique used to solve efficiently partial differential equations. In this paper, the NUMOL is applied to the solution of the two‐dimensional unsteady Navier–Stokes equations for incompressible laminar flows in Cartesian coordinates. The Navier–Stokes equations are first discretized (in space) on a staggered grid as in the Marker and Cell scheme. The discretized Navier–Stokes equations form an index 2 system of differential algebraic equations, which are afterwards reduced to a system of ordinary differential equations (ODEs), using the discretized form of the continuity equation. The pressure field is computed solving a discrete pressure Poisson equation. Finally, the resulting ODEs are solved using the backward differentiation formulas. The proposed method is illustrated with Dirichlet boundary conditions through applications to the driven cavity flow and to the backward facing step flow. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
In the current study, numerical investigation of incompressible turbulent flow is presented. By the artificial compressibility method, momentum and continuity equations are coupled. Considering Reynolds averaged Navier–Stokes equations, the Spalart–Allmaras turbulence model, which has accurate results in two‐dimensional problems, is used to calculate Reynolds stresses. For convective fluxes a Roe‐like scheme is proposed for the steady Reynolds averaged Navier–Stokes equations. Also, Jameson averaging method was implemented. In comparison, the proposed characteristics‐based upwind incompressible turbulent Roe‐like scheme, demonstrated very accurate results, high stability, and fast convergence. The fifth‐order Runge–Kutta scheme is used for time discretization. The local time stepping and implicit residual smoothing were applied as the convergence acceleration techniques. Suitable boundary conditions have been implemented considering flow behavior. The problem has been studied at high Reynolds numbers for cross flow around the horizontal circular cylinder and NACA0012 hydrofoil. Results were compared with those of others and a good agreement has been observed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号