首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rate constants for the reactions of OH radicals and Cl atoms with CH3ONO, C2H5ONO, n-C3H7ONO, n-C4H9ONO, and n-C5H11ONO have been determined at 298 ± 2 K and a total pressure of approximately 1 atm. The OH rate data were obtained using both the absolute rate technique of pulse radiolysis combined with kinetic spectroscopy and a relative rate method involving simultaneous measurement of the loss of the nitrite and the reference compound. The Cl rate constants were measured using the relative rate method. Values of the rate constants in units of 10?13 cm3 molecule?1 s?1 are:
Relative Cl Relative OH Absolute OH
CH3ONO 94.4 ± 7.4 3.0 ± 1.0 2.6 ± 0.5
C2H5ONO 295 ± 13 7.0 ± 1.5 7.0 ?1.1
n-C3H7ONO 646 ± 58 11.0 ± 1.5 12.0 ± 0.5
n-C4H9ONO 1370 ± 58 22.7 ± 0.8 27.2 ± 6.0
n-C5H11ONO 2464 ± 444 37.4 ± 5.0 42.5 ± 8.0
When compared to rate data for the corresponding alkanes the results show that the -ONO group decreases the rate constant for H atom abstraction by the OH radical from groups bonded to the -ONO group and also decreases that for groups in the β position. Similar results were found for the reaction of Cl atoms with these compounds. The results are discussed in terms of reactivity trends.  相似文献   

2.
Rate constants for the reactions of Cl atoms and OH radicals with haloalkanes were measured using the relative rate technique. From these values the atmospheric lifetimes of the organics with respect to Cl atoms and OH radicals were calculated. Cl atoms were produced by the photolysis of chlorine gas, and photolysis of methyl nitrite was the source of OH radicals. The rate constants were measured for a series of brominated and chlorinated alkanes for which measurements have not yet been reported excepting: k(Cl + 1-chloropropane) and k(OH + 1-chloropropane, 2-chloropropane, and bromoethane). The organics studied were 1-chloropropane, 2-chloropropane, 1,3 dichloropropane, 2-chloro 2methylpropane, bromoethane, 1-bromopropane, 2-bromopropane, 1-bromobutane, 1-bromopentane, and 1-bromohexane. Cl atom reactions were measured at 298 K, the OH radical reactions were measured at temperatures between 298–308 K. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
Rate constants for the reactions of OH radicals and Cl atoms with diethyl sulfide (DES), di-n-propyl sulfide (DPS), and di-n-butyl sulfide (DBS) have been determined at 295 ± 3 K and a total pressure of 1 atm. Hydroxyl radical rate data was obtained using the absolute technique of pulse radiolysis combined with kinetic spectroscopy. The chlorine atom rate constants were measured using a conventional photolytic relative rate method. The rate constant for the reaction of Cl atoms with dimethyl sulfide (DMS) was also determined. The following rate constants were obtained:   相似文献   

4.
Rate constants have been measured at room temperature for the reactions of Cl atoms with formic acid and with the HOCO radical: Cl + HCOOH → HCl + HOCO (R1) Cl + HOCO → HCl + CO2 (R2) Cl atoms were generated by flash photolysis of Cl2 and the progress of reaction was followed by time‐resolved infrared absorption measurements using tunable diode lasers on the CO2 that was formed either in the pair of reactions ( R1 ) plus ( R2 ), or in reaction ( R1 ) followed by O2 + HOCO → HO2 + CO2 (R3) In a separate series of experiments, conditions were chosen so that the kinetics of CO2 formation were dominated either by the rate of reaction ( R1 ) or by that of reactions ( R1 ) and ( R2 ) combined. The results of our analysis of these experiments yielded: k1 = (1.83 ± 0.12) × 10−13 cm3 molecule−1 s−1 k2 = (4.8 ± 1.0) × 10−11 cm3 molecule−1 s−1 © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 85–91, 2000  相似文献   

5.
Rate constants have been measured for the reaction of OH radicals with four amides, R1N(CH3)—C(O)R2 (R1 = H or Methyl, R2 = Methyl or Ethyl), at 300 and 384 K using flash photolysis/resonance fluorescence. Reactants are introduced under slow flow conditions and are controlled by two independent methods, gas saturation and continuous injection. It turns out that the reactivities of the amides are considerably lower than those of the corresponding amines. The pattern of rate constants obtained at 300 K: 14, 21, 5.2, and 7.6 · 10−12 cm3/s for N,N-Dimethylacetamide (dmaa), N,N-Dimethylpropionamide (dmpa), N-Methylacetamide (maa), and N-Methylpropionamide (mpa), respectively, indicates a single, dominating reaction center and strong electronic effects of the substituents at both sides of the amide function. Correspondingly, the observed negative temperature dependence (E/R = − 400 to − 600 K) excludes a direct abstraction mechanism. © 1997 John Wiley & Sons, Inc.  相似文献   

6.
A previous technique for the calculation of rate constants for the gas-phase reactions of the OH radical with organic compounds has been updated and extended to include sulfur- and nitrogen-containing compounds. The overall OH radical reaction rate constants are separated into individual processes involving (a) H-atom abstraction from C? H and O? H bonds in saturated organics, (b) OH radical addition to >C?C< and ? C?C? unsaturated bonds, (c) OH radical addition to aromatic rings, and (d) OH radical interaction with ? NH2, >NH, >N? , ? SH, and ? S? groups. During its development, this estimation technique has been tested against the available database, and only for 18 out of a total of ca. 300 organic compounds do the calculated and experimental room temperature rate constants disagree by more than a factor of 2. This suggests that this technique has utility in estimating OH radical reaction rate constants at room temperature and atmospheric pressure of air, and hence atmospheric lifetimes due to OH radical reaction, for organic compounds for which experimental data are not available. In addition, OH radical reaction rate constants can be estimated over the temperature range ca. 250–1000 K for those organic compounds which react via H-atom abstraction from C? H and O? H bonds, and over the temperature range ca. 250–500 K for compounds containing >C?C< bond systems.  相似文献   

7.
The rate constant for the reaction of OH radicals with pinonaldehyde has been measured at 293 ± 6 K using the relative rate method in the laboratory in Wuppertal (Germany) using photolytic sources for the production of OH radicals and in the EUPHORE smog chamber facility in Valencia (Spain) using the in situ ozonolysis of 2,3‐dimethyl‐2‐butene as a dark source of OH radicals. In all the experiments pinonaldehyde and the reference compounds were monitored by FTIR spectroscopy, and in addition in the EUPHORE smog chamber the decay of pinonaldehyde was monitored by the HPLC/DNPH method and the reference compound by GC/FID. The results from all the different series of experiments were in good agreement and lead to an average value of k(pinonaldehyde + OH) = (4.0 ± 1.0) × 10−11 cm3 molecule−1 s−1. This result lead to steady‐state estimates of atmospheric pinonaldehyde concentrations in the ppbV range (1 ppbV ≈ 2.5 × 1010 molecule cm−3 at 298 K and 1 atm) in regions with substantial α‐pinene emission. It also implies that atmospheric sinks of pinonaldehyde by reaction with OH radicals could be half as important as its photolysis. The rate constant of the reaction of pinonaldehyde with Cl atoms has been measured for the first time. Relative rate measurements lead to a value of k(pinonaldehyde + Cl) = (2.4 ± 1.4) × 10−10 cm3 molecule−1 s−1. In contrast to previous studies which suggested enhanced kinetic reactivity for pinonaldehyde compared to other aldehydes, the results from both the OH‐ and Cl‐initiated oxidation of pinonaldehyde in the present work are in line with predictions using structure‐activity relationships. © 1999 John Wiley & Sons, Inc., Int J Chem Kinet 31: 291–301, 1999  相似文献   

8.
Observations in the O3 + trans-2-butene reaction system and in the O + trans-2-butene + O2 reaction system suggest the intermediacy of alkenoxy radicals. A mechanism is proposed for the production of Cn and Cm (m <n) alkenoxy radicals by the reaction of CnH2n alkenes with oxygen atoms or with ozone.  相似文献   

9.
Rate constants for the reactions of OH radicals with dimethyl methylphosphonate [DMMP, (CH3O)2P(O)CH3], dimethyl ethylphosphonate [DMEP, (CH3O)2P(O)C2H5], diethyl methylphosphonate [DEMP, (C2H5O)2P(O)CH3], diethyl ethylphosphonate [DEEP, (C2H5O)2P(O)C2H5], triethyl phosphate [TEP, (C2H5O)3PO] and 1,3,5-trimethylbenzene have been measured over the temperature range 278-348 K at atmospheric pressure of air using a relative rate method. alpha-Pinene (for DEMP, DEEP, TEP and 1,3,5-trimethylbenzene) and di-n-butyl ether (for DMMP and DMEP) were used as the reference compounds, and rate constants for the reaction of OH radicals with di-n-butyl ether were also measured over the same temperature range using alpha-pinene and n-decane as the reference compounds. The Arrhenius expressions obtained for these OH radical reactions (in cm3 molecule(-1) s(-1) units) are 8.00 x 10(-14)e(1470+/-132)/T for DMMP (296-348 K), 9.76 x 10(-14)e(1520+/-14)/T for DMEP (296-348 K), 4.20 x 10(-13)e(1456+/-227)/T for DEMP (296-348 K), 6.46 x 10(-13)e(1339+/-376)/T for DEEP (296-348 K), 4.29 x 10(-13)e(1428+/-219)/T for TEP (296-347 K), and 4.40 x 10(-12)e(738+/-176)/T for 1,3,5-trimethylbenzene (278-347 K), where the indicated errors are two least-squares standard deviations and do not include the uncertainties in the rate constants for the reference compounds. The measured rate constants for di-n-butyl ether are in good agreement with literature data over the temperature range studied (278-348 K).  相似文献   

10.
The homogeneous gas-phase reaction of N2H4 with O3 in air atmospheric pressure has been used to generate OH radicals in the dark, allowing the determination of relative OH radical rate constants for compounds which photolyze rapidly. This technique was first validated by determining the OH radical rate constant ratios for n-butane/cyclohexane and methanol/dimethyl ether, both of which are in excellent agreement with the literature values. The rate constant for the reaction of OH radicals with methyl nitrite at 300 ± 3 K was then determined relative to those for the reaction of OH radicals with n-hexane and dimethyl ether. The resulting rate constant of 1.8 × 10?13 cm3/molecule·s is about seven times lower than those of previous measurements which employed a different nonphotolytic relative rate method.  相似文献   

11.
The kinetics of the gas-phase reactions of OH radicals, NO3 radicals, and O3 with indan, indene, fluorene, and 9,10-dihydroanthracene have been studied at 297 ± 2 K and atmospheric pressure of air. The rate constants, or upper limits thereof, for the O3 reactions were (in cm3 molecule−1 s−1 units): indan, < 3 × 10−19; indene, (1.7 ± 0.5) × 10−16, fluorene, < 2 × 10−19; and 9,10-dihydroanthracene, (9.0 ± 2.0) × 10−19. Using a relative rate method, the rate constants for the OH radical and NO3 radical reactions, respectively, were (in cm3 molecule−1 s−1 units): indan, (1.9 ± 0.5) × 10−11 and (6.6 ± 2.0) × 10−15; indene, (7.8 ± 2.0) × 10−11 and (4.1 ± 1.5) × 10−12; fluorene, (1.6 ± 0.5) × 10−11 and (3.5 ± 1.2) × 10−14; and 9,10-dihydroanthracene, (2.3 ± 0.6) × 10−11 and (1.2 ± 0.4) × 10−12. These kinetic data were used to assess the relative contributions of the various reaction pathways. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 299–309, 1997.  相似文献   

12.
Kinetic studies on the gas-phase reactions of OH and NO3 radicals and ozone with ethyl vinyl ether (EVE), propyl vinyl ether (PVE) and butyl vinyl ether (BVE) have been performed in a 405 L borosilicate glass chamber at 298 +/- 3 K in synthetic air using in situ FTIR spectroscopy to monitor the reactants. Using a relative kinetic method rate coefficients (in units of cm3 molecule(-1) s(-1)) of (7.79 +/- 1.71) x 10(-11), (9.73 +/- 1.94) x 10(-11) and (1.13 +/- 0.31) x 10(-10) have been obtained for the reaction of OH with EVE, PVE and BVE, respectively, (1.40 +/- 0.35) x 10(-12), (1.85 +/- 0.53) x 10(-12) and (2.10 +/- 0.54) x 10(-12) for the reaction of NO3 with EVE, PVE and BVE, respectively, and (2.06 +/- 0.42) x 10(-16), (2.34 +/- 0.48) x 10(-16) and (2.59 +/- 0.52) x 10(-16) for the ozonolysis of EVE, PVE and BVE, respectively. Tropospheric lifetimes of EVE, PVE and BVE with respect to the reactions with reactive tropospheric species (OH, NO3 and O3) have been estimated for typical OH and NO3 radical and ozone concentrations.  相似文献   

13.
Using relative rate methods, rate constants for the gas-phase reactions of divinyl sulfoxide [CH 2CHS(O)CHCH 2; DVSO] with NO 3 radicals and O 3 have been measured at 296 +/- 2 K, and rate constants for the reaction with OH radicals have been measured over the temperature range of 277-349 K. Rate constants obtained for the NO 3 radical and O 3 reactions at 296 +/- 2 K were (6.1 +/- 1.4) x 10 (-16) and (4.3 +/- 1.0) x 10 (-19) cm (3) molecule (-1) s (-1), respectively. For the OH radical reaction, the temperature-dependent rate expression obtained was k = 4.17 x 10 (-12)e ((858 +/- 141)/ T ) cm (3) molecule (-1) s (-1) with a 298 K rate constant of (7.43 +/- 0.71) x 10 (-11) cm (3) molecule (-1) s (-1), where, in all cases, the errors are two standard deviations and do not include the uncertainties in the rate constants for the reference compounds. Divinyl sulfone was observed as a minor product of both the OH radical and NO 3 radical reactions at 296 +/- 2 K. Using in situ Fourier transform infrared spectroscopy, CO, CO 2, SO 2, HCHO, and divinyl sulfone were observed as products of the OH radical reaction, with molar formation yields of 35 +/- 11, 2.2 +/- 0.8, 33 +/- 4, 54 +/- 6, and 5.4 +/- 0.8%, respectively, in air. For the experimental conditions employed, aerosol formation from the OH radical-initiated reaction of DVSO in the presence of NO was minor, being approximately 1.5%. The data obtained here for DVSO are compared with literature data for the corresponding reactions of dimethyl sulfoxide.  相似文献   

14.
《Chemical physics letters》1986,128(2):168-171
The absolute rate constants for the gas-phase H-atom abstraction by hydroxyl radicals from cyclohexane and ethane have been determined at room temperature. OH radicals were produced by pulse radiolysis of an H2O-Ar mixture, and the decay of OH was followed by monitoring the transient light absorption around 309 nm. The rate constants were found to be k = (5.24±0.36) × 10−12 and (2.98±0.21) × 10−13 cm3 molecule−1 s−1 for cyclohexane and ethane, res- pectively. These results are compared with literature data.  相似文献   

15.
Rate constants for the gas-phase reactions of NO3 radicals with a series of cycloalkenes have been determined at 298 ± 2 K, using a relative rate technique. Using an equilibrium constant for the NO2 + NO3 ? N2O5 reactions of 3.4 × 10?11 cm3 molecule?1, the following rate constants (in units of 10?13 cm3 molecule?1 s?1) were obtained: cyclopentene, 4.52 ± 0.52; cycloheptene, 4.71 ± 0.56; bicyclo[2.2.1]-2-heptene, 2.41 ± 0.28; bicyclo[2.2.2]-2-octene, 1.41 ± 0.17; bicyclo[2.2.1]-2,5-heptadiene, 9.92 ± 1.13; and 1,3,5-cycloheptatriene, 12.6 ± 2.9. When combined with previous literature rate constants for cyclohexene and 1,4-cyclohexadiene, these data show that the rate constants for the nonconjugated cycloalkenes studied depend to a first approximation on the number of double bonds and the degree and configuration of substitution per double bond. No obvious effects of ring strain energy on these NO3 radical addition rate constants were observed. Our previous a priori predictive techniques for the alkenes and cycloalkenes can now be extended to strained cycloalkenes.  相似文献   

16.
Rate constants for the gas-phase reactions of the Cl atom with a series of alkanes have been determined at 296 ± 2 K using a relative rate method. Using a rate constant for the Cl atom reaction with n-butane of 1.94 × 10?10 cm3 molecule?1 s?1, the rate constants obtained (in units of 10?11 cm3 molecule?1 s?1) were: 2-methylpentane, 25.0 ± 0.8; 3-methylpentane, 24.8 ± 0.6; cyclohexane, 30.8 ± 1.2; cyclohexane-d12, 25.6 ± 0.8; 2,4-dimethylpentane, 25.6 ± 1.2; 2,2,3-trimethylbutane, 17.9 ± 0.7; methylcyclohexane, 34.7 ± 1.2; n-octane, 40.5 ± 1.2; 2,2,4-trimethylpentane, 23.1 ± 0.8; 2,2,3,3-tetramethylbutane, 15.6 ± 0.9; n-nonane, 42.9 ± 1.2; n-decane, 48.7 ± 1.8; and cis-bicyclo[4.4.0]decane, 43.1 ± 0.8, where the indicated errors are two least-squares standard deviations and do not include the uncertainties in the n-butane rate constant. These data have been combined with rate constants obtained previously for ten C2? C7 alkanes and this entire data set has been used to develop an estimation method allowing the room temperature rate constants for the reactions of the Cl atom with alkanes to be calculated. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
Smog chamber/FTIR techniques were used to study the atmospheric chemistry of the Z and E isomers of CF3CF=CHF, which we refer to as CF3CF=CHF(Z) and CF3CF=CHF(E). The rate constants k(Cl + CF3CF=CHF(Z)) = (4.36 +/- 0.48) x 10-11, k(OH + CF3CF=CHF(Z)) = (1.22 +/- 0.14) x 10-12, and k(O3 + CF3CF=CHF(Z)) = (1.45 +/- 0.15) x 10-21 cm3 molecule-1 s-1 were determined for the Z isomer of CF3CF=CHF in 700 Torr air diluent at 296 +/- 2 K. The rate constants k(Cl + CF3CF=CHF(E)) = (5.00 +/- 0.56) x 10-11, k(OH + CF3CF=CHF(E)) = (2.15 +/- 0.23) x 10-12, and k(O3 + CF3CF=CHF(E)) = (1.98 +/- 0.15) x 10-20 cm3 molecule-1 s-1 were determined for the E isomer of CF3CF=CHF in 700 Torr air diluent at 296 +/- 2 K. Both the Cl-atom and OH-radical-initiated atmospheric oxidation of CF3CF=CHF give CF3C(O)F and HC(O)F in molar yields indistinguishable from 100% for both the Z and E isomer. CF3CF=CHF(Z) has an atmospheric lifetime of approximately 18 days and a global warming potential (100 year time horizon) of approximately 6. CF3CF=CHF(E) has an atmospheric lifetime of approximately 10 days and a global warming potential (100 year time horizon) of approximately 3. CF3CF=CHF has a negligible global warming potential and will not make any significant contribution to radiative forcing of climate change.  相似文献   

18.
Rate coefficients for the reactions of hydroxyl radicals and chlorine atoms with methyl crotonate and ethyl crotonate have been determined at 298 K and atmospheric pressure. The decay of the organics was monitored using gas chromatography with flame ionization detection (GC-FID), and the rate constants were determined using the relative rate method with different reference compounds. Room temperature rate coeficcients were found to be (in cm(3) molecule(-1) s(-1)): k(1)(OH + CH(3)CH═CHC(O)OCH(3)) = (4.65 ± 0.65) × 10(-11), k(2)(Cl + CH(3)CH═CHC(O)OCH(3)) = (2.20 ± 0.55) × 10(-10), k(3)(OH + CH(3)CH═CHC(O)OCH(2)CH(3)) = (4.96 ± 0.61) × 10(-11), and k(4)(Cl + CH(3)CH═CHC(O)OCH(2)CH(3)) = (2.52 ± 0.62) × 10(-10) with uncertainties representing ±2σ. This is the first determination of k(1), k(3), and k(4) under atmospheric pressure. The rate coefficients are compared with previous determinations for other unsaturated and oxygenated VOCs and reactivity trends are presented. In addition, a comparison between the experimentally determined k(OH) with k(OH) predicted from k vs E(HOMO) relationships is presented. On the other hand, product identification under atmospheric conditions has been performed for the first time for these unsaturated esters by the GC-MS technique in NO(x)-free conditions. 2-Hydroxypropanal, acetaldehyde, formaldehyde, and formic acid were positively observed as degradation products in agreement with the addition of OH to C2 and C3 of the double bond, followed by decomposition of the 2,3- or 3,2-hydroxyalkoxy radicals formed. Atmospheric lifetimes, based on of the homogeneous sinks of the unsaturated esters studied, are estimated from the kinetic data obtained in the present work.  相似文献   

19.
The kinetics of the gas-phase reaction of ozone with unsaturated alcohols, carbonyls, and esters in air have been investigated at atmospheric pressure, ambient temperature (285–295 K), and in the presence of sufficient cyclohexane to scavenge the hydroxyl radical which forms as a product of the ozone-unsaturated compound reaction. The reaction rate constants, in units of 10?18 cm3 molecule?1 s?1, are 0.26 ± 0.05 for acrolein, 1.07 ± 0.05 for 2-ethyl acrolein, 6.0 ± 0.4 for ethyl vinyl ketone, 4.9 ± 0.4 for 3-buten-1-ol, 14.4 ± 2.0 for allyl alcohol, 105 ± 7 for cis-3-hexen-1-ol, 7.5 ± 0.9 for methyl methacrylate, 2.9 ± 0.3 for vinyl acetate, 4.4 ± 0.3 for methyl crotonate, and 8.1 ± 0.3 for the 1,1-disubstituted alkene 2-ethyl-1-butene. Substituent effects on reactivity are discussed by comparison with alkenes and indicate that the reactivity of unsaturated alcohols is the same as that of alkene structural homologues and that the —C(O)OR, —C(O)R, and —CHO groups decrease the reactivity towards ozone as compared to alkyl groups. Estimates are made of the atmospheric persistence of these unsaturated compounds using the kinetic data obtained in this study as input to structure-reactivity and linear free-energy relationships. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
A potential function has been derived for the ground-state surface of HCO which reproduces the spectroscopic properties of the equilibrium molecule and the results of ab-initio calculations at other stationary points on the surface. The potential has been used for a classical trajectory study of the vibrational excitation of CO on collision with fast H atoms and for a study of the reaction of ground-state oxygen atoms and CH radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号