首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interaction of viscous wakes with a free surface   总被引:5,自引:0,他引:5  
The interaction of laminar wakes with.free-surface waves generated by a moving body beneath the surface of an incompressible viscous fluid of infinite depth was investigated analytically. The analysis was based on the steady Oseen equations for disturbed flows.The kinematic and dynamic boundary conditions were linearized for the small-amplitude free-surface waves. The effect of the moving body was mathematically modeled as an Oseenlet.The disturbed flow was regarded as the sum of an unbounded singular Oseen flow which represents the effect of the viscous wake and a bounded regular Oseen flow which represents the influence of the free surface. The exact solution for the free-surface waves was obtained by the method of integral transforms. The asymptotic representation with additive corrections for the free-surface waves was derived by means of Lighthill‘s two-stage scheme. The symmetric solution obtained shows that the amplitudes of the free-surface waves are exponentially damped by the presences of viscosity and submergence depth.  相似文献   

2.
A pseudospectral matrix-element method is proposed for the analysis of 2-D nonlinear time-domain free-surface flow problems. The Chebyshev expansion technique established by Ku & Hatziavramidis has been used to discretize the σ-transformed governing equations including nonlinear boundary conditions. Simulations of non overturning transient waves in fixed and base-excited tanks are presented. The results are compared with first-and second-order analytical solutions for sloshing and standing waves, respectively. Excellent agreement is achieved at low values of wave steepness, with the high accuracy due to the close coupling between points. As the wave steepness increases, the influence of higher-order nonlinear components becomes significant, and is modelled by the present scheme. The solution is extremely stable, with the σ-transformation exactly fitting the free-surface boundary, unlike other schemes which have to use free-surface smoothing.  相似文献   

3.
The interaction of unsteady Stokeslets with the free surface of an initially quiescent incompressible fluid of infinite depth is investigated analytically for two- and three-dimensional cases. The disturbed flows are generated by an unsteady singular force moving perpendicularly downwards away from the surface. The analysis is based on the assumption that the motion satisfies the linearized unsteady Navier–Stokes equations with linear kinematic and dynamic boundary conditions. Firstly, the asymptotic representation for the transient free-surface waves due to an instantaneous Stokeslet is derived for a large time with a fixed distance-to-time ratio. As is well known, the corresponding inviscid waves predicted by the potential theory do not decay to zero as the time goes to infinity. In the present study, the transient waves predicted by the viscous theory eventually vanish due to the presence of viscosity, which is consistent with reality from the physical point of view. Secondly, the asymptotic solutions are obtained for the unsteady free-surface waves due to a harmonically oscillating Stokeslet. It is found that the unsteady waves can be decomposed into steady-state and transient responses. The steady state can be attained as time approaches infinity. It is shown that the viscosity of the fluid plays an important role in the evolution of the singularity-induced waves.  相似文献   

4.
In a previous study [D. Dutykh, F. Dias, Viscous potential free-surface flows in a fluid layer of finite depth, C. R. Acad. Sci. Paris, Ser. I 345 (2007) 113–118] we presented a novel visco-potential free-surface flows formulation. The governing equations contain local and nonlocal dissipative terms. From physical point of view, local dissipation terms come from molecular viscosity but in practical computations, rather eddy viscosity should be used. On the other hand, nonlocal dissipative term represents a correction due to the presence of a bottom boundary layer. Using the standard procedure of Boussinesq equations derivation, we come to nonlocal long wave equations. In this article we analyze dispersion relation properties of proposed models. The effect of nonlocal term on solitary and linear progressive waves attenuation is investigated. Finally, we present some computations with viscous Boussinesq equations solved by a Fourier type spectral method.  相似文献   

5.
将ALE(任意的拉格朗日-欧拉)运动学描述关系引入到Navier-Stokes方程中,在时间域上采用分步离散方法中的速度修正格式,利用Galerkin加权余量方法推导了系统的有限元数值离散方程;推导了考虑表面张力效应时有限元边界件的弱积分形式。模拟了考虑表面张力情况下圆筒形贮腔中液体的非线性晃动,揭示了考虑表面张力效应时液体非线性晃动的重要特征。  相似文献   

6.
The motion of turbulent Stokes waves on a finite constant depth fluid with a rough bed is considered. First and second order turbulent boundary layer equations are solved numerically for a range of roughness parameters, and from the solutions are calculated the mass transport velocity profiles and attenuation coefficients. A new mechanism of turbulent mass transport is found which predicts a reduction and reversal of drift velocity in shallow water in agreement with experimental observations under turbulent conditions. This transpires because the second order Stokes wave motion, in a turbulent boundary layer, can directly influence the mass transport velocity by mode coupling interactions between different second order Fourier modes of oscillation. It is also found that the Euler contribution due to the radiation stress of the first order motion is reduced to half of it's corresponding laminar value as a consequence of the velocity squared stress law. The attenuation is found to be of inverse algebraic type with the reciprocal wave height varying linearly with either distance or time. The severe wave height restriction applicable to the Longuet-Higgins [4] solution is shown not to apply to progressive waves on a finite constant depth of fluid. The existence of sand bars on sloping beaches exposed to turbulent waves is predicted.  相似文献   

7.
The response of a semi-infinite compressible fluid to a step-wise change in temperature of its boundary is investigated analytically and numerically. Numerical results of the boundary layer structure are compared with Clarke’s analytical solution for a gas with thermal conductivity proportional to temperature. To avoid unwanted numerical dissipation in the numerical analysis, the space-time conservation element and solution element (CESE) method has been adopted to solve the unsteady 1-D Navier-Stokes equations. Good agreement between analytical and numerical results has been found for the development of the thermal boundary layer on a long time scale. Weak shock waves and expansion waves induced by the thermal boundary layer due to its compressibility, are observed in the numerical simulation. Finally, the numerical method has been applied to the reflection of a non-linear expansion wave and to a shock wave from an isothermal wall, thereby illustrating the effect of the boundary layer on the external flow field.  相似文献   

8.
We prove the existence of a large family of two-dimensional travelling wave patterns for a Boussinesq system which describes three-dimensional water waves. This model equation results from full Euler equations in assuming that the depth of the fluid layer is small with respect to the horizontal wave length, and that the flow is potential, with a free surface without surface tension. Our proof uses the Lyapunov–Schmidt method which may be managed here, contrary to the case of gravity waves with full Euler equations. Our results are in a good qualitative agreement with experimental results.  相似文献   

9.
A novel implicit immersed boundary method of high accuracy and efficiency is presented for the simulation of incompressible viscous flow over complex stationary or moving solid boundaries. A boundary force is often introduced in many immersed boundary methods to mimic the presence of solid boundary, such that the overall simulation can be performed on a simple Cartesian grid. The current method inherits this idea and considers the boundary force as a Lagrange multiplier to enforce the no‐slip constraint at the solid boundary, instead of applying constitutional relations for rigid bodies. Hence excessive constraint on the time step is circumvented, and the time step only depends on the discretization of fluid Navier‐Stokes equations, like the CFL condition in present work. To determine the boundary force, an additional moving force equation is derived. The dimension of this derived system is proportional to the number of Lagrangian points describing the solid boundaries, which makes the method very suitable for moving boundary problems since the time for matrix update and system solving is not significant. The force coefficient matrix is made symmetric and positive definite so that the conjugate gradient method can solve the system quickly. The proposed immersed boundary method is incorporated into the fluid solver with a second‐order accurate projection method as a plug‐in. The overall scheme is handled under an efficient fractional step framework, namely, prediction, forcing, and projection. Various simulations are performed to validate current method, and the results compare well with previous experimental and numerical studies.  相似文献   

10.
11.
基于非结构混合网格的N-S方程求解器和结构柔度影响系数法,发展了一种考虑气动、结构非线性的基于RBF插值技术CFD/CSD耦合分析方法,适用于解决现代大展弦比飞机的非线性静气动弹性问题。该方法采用时间相关法(即求解非定常方程组,用长时间的渐近解趋于定常状态)求解静气弹分析时的定常流动。考虑大展弦比飞机结构变形问题为大变形小应力问题,在利用柔度系数法求解结构方程时,假设每次求解结构方程时应力与应变为线性关系,整体静气弹分析过程为非线性关系,因此每次求解结构方程时要更新柔度影响系数矩阵。在非定常N-S方程每求解一个时间步耦合一次结构有限元分析,由于结构有限元分析的时间相对于气动分析时间是很短的,所以这种方法实际上近似使用了一次求解非定常气动力的时间完成了整个静气动弹性分析的过程。对于气动网格与结构有限元网格不一致性,本文采用径向基函数(RBF)插值方法中的TPS方法进行结构弹性变形和气动载荷插值,采用虚功原理完成气动载荷数据交换。为了节省气弹分析时间,采用动网格方法对气动网格进行更新,本文基于RBF插值方法发展一种适用于混合网格(四面体、三棱柱、金字塔和六面体)变形的动网格方法,可以保证附面层网格的质量与分布从而准确模拟其流动。利用该方法对M6机翼、DLR-F6翼身组合体和某大型客机机翼进行了静气动弹性特性分析,结果验证了本文开发的非线性CFD/CSD耦合分析方法的可行性、精确性和高效性。  相似文献   

12.
非均匀水流中非线性波传播的数值模拟   总被引:2,自引:1,他引:1  
王亚玲  张洪生 《力学学报》2007,39(6):732-740
以一种考虑波流相互作用的新型{Boussinesq}型方程为控制方程组, 采用五阶{Runge}-{Kutta}-{England}格式离散时间积分,采用七点 差分格式离散空间导数,并通过采用恰当的出流边界条件,从而建立了非均匀水流中非线性 波传播的数值模拟模型. 通过对均匀水流与水深水域内和潜堤地形上存在弱流或强流时波浪 传播的数值模拟,说明模型能有效地反映水流对波浪传播的影响.  相似文献   

13.
非均匀水流水域波浪的传播变形   总被引:2,自引:2,他引:0  
将两个不同的、考虑波流相互作用和能量耗散项的、依赖时间变化的双曲型缓坡方程分别化 为一组等价的控制方程组,具体分析了底摩阻项对相对频率和波数矢的影响,从而选择了合 适的数学模型. 将所选择的缓坡方程化为依赖时间变化的抛物型方程,并用ADI法进 行数值求解,建立了缓变水深水域非均匀水流中波浪传播的数值模拟模型. 通过和波流共线 的解析解的比较,说明数值解和解析解相一致. 结合Arthur(1950)水流这一经典算例,定 量地讨论了考虑联合折射-绕射作用后的波数和仅考虑折射作用的波数的差别及其对波高分 布的影响. 在基本同样的条件下, 本文的数值解与他人的计算结果一致.  相似文献   

14.
A high‐order difference method based multiphase model is proposed to simulate nonlinear interactions between water wave and submerged coastal structures. The model is based on the Navier–Stokes equations using a constrained interpolation profile (CIP) method for the flow solver, and employs an immersed boundary method (IBM) for the treatment of wave–structure interactions. A more accurate interface capturing scheme, the volume of fluid/weighed line interface calculation (VOF/WLIC) scheme, is adopted as the interface capturing method. A series of computations are performed to verify the application of the model for simulations of fluid interaction with various structures. These problems include flow over a fixed cylinder, water entry of a circular cylinder and solitary waves passing various submerged coastal structures. Computations are compared with the available analytical, experimental and other numerical results and good agreement is obtained. The results of this study demonstrate the accuracy and applications of the proposed model to simulate the nonlinear flow phenomena and capture the complex free surface flow. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The method of boundary integral equation is widely applied to compute and analyze wave–structure interactions in marine and offshore engineering, and the application is also seen in marine aquaculture to deal with waves and porous structure interactions. The application of the Fredholm integral equation of the second kind together with the free-surface Green function for a surface-piercing body suffers from irregular frequencies which may be confused with resonance peaks. A simple and efficient method to remove irregular frequencies in the wave–structure interactions is developed via enforcing null potential (and horizontal derivatives) on discrete points on the interior water-plane area and is referred to as overdetermined integral equations (and enhanced overdetermined integral equations), respectively. Structures with solid surface, porous surface and their blending are considered, and numerical results demonstrate the effectiveness of this method. In contrast to extended integral equations, the overdetermined integral equations are easy to implement and more time-efficient.  相似文献   

16.
An incompressible‐smoothed particle hydrodynamics (I‐SPH) formulation is presented to simulate impulsive waves generated by landslides. The governing equations, Navier–Stokes equations, are solved in a Lagrangian form using a two‐step fractional method. Landslides in this paper are simulated by a submerged mass sliding along an inclined plane. During sliding, both rigid and deformable landslides mass are considered. The present numerical method is examined for a rigid wedge sliding into water along an inclined plane. In addition solitary wave generated by a heavy box falling inside water, known as Scott Russell wave generator, which is an example for simulating falling rock avalanche into artificial and natural reservoirs, is simulated and compared with experimental results. The numerical model is also validated for gravel mass sliding along an inclined plane. The sliding mass approximately behaves like a non‐Newtonian fluid. A rheological model, implemented as a combination of the Bingham and the general Cross models, is utilized for simulation of the landslide behaviour. In order to match the experimental data with the computed wave profiles generated by deformable landslides, parameters of the rheological model are adjusted and the numerical model results effectively match the experimental results. The results prove the efficiency and applicability of the I‐SPH method for simulation of these kinds of complex free surface problems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents a composite multigrid method and its application to a geometrically complex flow. The treatment of the interior boundary conditions within a composite multigrid strategy is described in detail for a 1D model equation. For the Navier-Stokes equations a staggered grid technique is adopted for spatial discretization and a fractional step method is used for the time advance. Lid-driven cavity flows are used to demonstrate the effectiveness of the method.  相似文献   

18.
A wave absorption filter for the far‐end boundary of semi‐infinite large reservoirs is developed for numerical simulation of unsteady free surface flows. Mathematical model is based on finite volume solution of the Navier–Stokes equations and depth‐integrated continuity equation to track the free surface. The Sommerfeld boundary condition is applied at the far‐end of the truncated computational domain. A dissipation zone is formed by applying artificial pressure on water surface to dissipate the kinetic energy of the outgoing waves. The computational scheme is tested to verify the conservation of total fluid volume in the domain for long simulation durations. Combination of the Sommerfeld boundary and dissipation zone can effectively minimize reflections and prevent cumulative changes in total fluid volume in the domain. Solitary wave, nonlinear periodic waves and irregular waves are simulated to illustrate the numerical developments. Earthquake excited surface waves and nonlinear hydrodynamic pressures in a dam–reservoir are computed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
本文用求解化学流体力学基本方程组的方法研究了不可压自由表面问题,着重引入了流体体积分数技术,建立了水坝倒塌问题的物理模型,运用该技术和模型,计算得到了水流的速度和压力在空间的分布及其随时间的变化,与实验观测一致.  相似文献   

20.
In this paper we analyze mathematical properties of an isotropic soft solid model which is characterized by three elastic constants. The model was proposed to interpret measurements of weakly non-linear shear waves in gel-like and tissue-like media. In our analysis we are particularly interested in third order non-linear terms. We present for the first time the full equations of elastodynamics, as well as the equations for plane waves for this model, with cubically non-linear terms. Next, the interaction coefficients for non-linear interactions of three plane waves to produce the fourth wave are explicitly calculated. These coefficients show which of the three waves interact with each other and determine how strong the effect of interaction is on the produced fourth wave. It turns out that these coefficients are expressed in terms of some combinations of three elastic constants. The obtained results can be helpful in experimental determination of elastic constants which describe the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号