首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let G be a graph of order n and k ≥ 0 an integer. It is conjectured in [8] that if for any two vertices u and v of a 2(k + 1)‐connected graph G,d G (u,v) = 2 implies that max{d(u;G), d(v;G)} ≥ (n/2) + 2k, then G has k + 1 edge disjoint Hamilton cycles. This conjecture is true for k = 0, 1 (see cf. [3] and [8]). It will be proved in this paper that the conjecture is true for every integer k ≥ 0. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 8–20, 2000  相似文献   

2.
Let a and b be integers with b ? a ? 0. A graph G is called an [a,b]-graph if a ? dG(v) ? b for each vertex vV(G), and an [a,b]-factor of a graph G is a spanning [a,b]-subgraph of G. A graph is [a,b]-factorable if its edges can be decomposed into [a,b]-factors. The purpose of this paper is to prove the following three theorems: (i) if 1 ? b ? 2a, every [(12a + 2)m + 2an,(12b + 4)m + 2bn]-graph is [2a, 2b + 1]-factorable; (ii) if b ? 2a ?1, every [(12a ?4)m + 2an, (12b ?2)m + 2bn]-graph is [2a ?1,2b]-factorable; and (iii) if b ? 2a ?1, every [(6a ?2)m + 2an, (6b + 2)m + 2bn]-graph is [2a ?1,2b + 1]-factorable, where m and n are nonnegative integers. They generalize some [a,b]-factorization results of Akiyama and Kano [3], Kano [6], and Era [5].  相似文献   

3.
For a graph G, let σ2(G) denote the minimum degree sum of a pair of nonadjacent vertices. We conjecture that if |V(G)| = n = Σki = 1 ai and σ2(G) ≥ n + k − 1, then for any k vertices v1, v2,…, vk in G, there exist vertex‐disjoint paths P1, P2,…, Pk such that |V(Pi)| = ai and vi is an endvertex of Pi for 1 ≤ ik. In this paper, we verify the conjecture for the cases where almost all ai ≤ 5, and the cases where k ≤ 3. © 2000 John Wiley & Sons, Inc. J Graph Theory 34: 163–169, 2000  相似文献   

4.
Let a and b be integers such that 0 ? a ? b. Then a graph G is called an [a, b]-graph if a ? dG(x) ? b for every x ? V(G), and an [a, b]-factor of a graph is defined to be its spanning subgraph F such that a ? dF(x) ? b for every vertex x, where dG(x) and dF(x) denote the degrees of x in G and F, respectively. If the edges of a graph can be decomposed into [a.b]-factors then we say that the graph is [2a, 2a]-factorable. We prove the following two theorems: (i) a graph G is [2a, 2b)-factorable if and only if G is a [2am,2bm]-graph for some integer m, and (ii) every [8m + 2k, 10m + 2k]-graph is [1,2]-factorable.  相似文献   

5.
For a graph G and an integer k ≥ 1, let ςk(G) = dG(vi): {v1, …, vk} is an independent set of vertices in G}. Enomoto proved the following theorem. Let s ≥ 1 and let G be a (s + 2)-connected graph. Then G has a cycle of length ≥ min{|V(G)|, ς2(G) − s} passing through any path of length s. We generalize this result as follows. Let k ≥ 3 and s ≥ 1 and let G be a (k + s − 1)-connected graph. Then G has a cycle of length ≥ min{|V(G)|, − s} passing through any path of length s. © 1998 John Wiley & Sons, Inc. J. Graph Theory 29: 177–184, 1998  相似文献   

6.
For a positive integer k, a graph G is k-ordered hamiltonian if for every ordered sequence of k vertices there is a hamiltonian cycle that encounters the vertices of the sequence in the given order. It is shown that if G is a graph of order n with 3 ≤ kn/2, and deg(u) + deg(v) ≥ n + (3k − 9)/2 for every pair u, v of nonadjacent vertices of G, then G is k-ordered hamiltonian. Minimum degree conditions are also given for k-ordered hamiltonicity. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 199–210, 2003  相似文献   

7.
For a nontrivial connected graph G, let ${c: V(G)\to {{\mathbb N}}}For a nontrivial connected graph G, let c: V(G)? \mathbb N{c: V(G)\to {{\mathbb N}}} be a vertex coloring of G, where adjacent vertices may be colored the same. For a vertex v of G, let N(v) denote the set of vertices adjacent to v. The color sum σ(v) of v is the sum of the colors of the vertices in N(v). If σ(u) ≠ σ(v) for every two adjacent vertices u and v of G, then c is called a sigma coloring of G. The minimum number of colors required in a sigma coloring of a graph G is called its sigma chromatic number σ(G). The sigma chromatic number of a graph G never exceeds its chromatic number χ(G) and for every pair a, b of positive integers with ab, there exists a connected graph G with σ(G) = a and χ(G) = b. There is a connected graph G of order n with σ(G) = k for every pair k, n of positive integers with kn if and only if kn − 1. Several other results concerning sigma chromatic numbers are presented.  相似文献   

8.
The distancedG(u,v) between two vertices u and v in a connected graph G is the length of the shortest (u,v) path in G. A (u,v) path of length dG(u,v) is called a (u,v)-geodesic. A set XV is called weakly convex in G if for every two vertices a,bX, exists an (a,b)-geodesic, all of whose vertices belong to X. A set X is convex in G if for all a,bX all vertices from every (a,b)-geodesic belong to X. The weakly convex domination number of a graph G is the minimum cardinality of a weakly convex dominating set of G, while the convex domination number of a graph G is the minimum cardinality of a convex dominating set of G. In this paper we consider weakly convex and convex domination numbers of tori.  相似文献   

9.
Gini, Lehmer, Beckenbach, and others studied the meanG s (a, b) = (a s +b s )/(a s 1 +b s-1 ) We proveTheorem 1 The identity (ina, b)G s (G t ,G u ) =G v holds if and only if (s, t, u, v) is (s, t, t, t) (the trivial solution) or one of (1, 1 –k, 1 +k, 1), (1/2, 1 –k, k, 1/2), or (0,–k, k, 0) (the exotic solutions,k is any real number)Theorem 2 IfP s (a, b) is the power mean [(a s +b s )/2]1/s , thenP s (P t ,P u ) =P v has only the trivial solution (s, t, u, v) = (s, t, t, t) and the exotic solution (0,t, –t, 0) The family of meansG s (respP s ) includes the classical arithmetic, geometric, and harmonic means  相似文献   

10.
A graph G = (V, E) is k-edge-connected if for any subset E′ ⊆ E,|E′| < k, GE′ is connected. A dk-tree T of a connected graph G = (V, E) is a spanning tree satisfying that ∀vV, dT(v) ≤ + α, where [·] is a lower integer form and α depends on k. We show that every k-edge-connected graph with k ≥ 2, has a dk-tree, and α = 1 for k = 2, α = 2 for k ≥ 3. © 1998 John Wiley & Sons, Inc. J Graph Theory 28: 87–95, 1998  相似文献   

11.
Given a simple plane graph G, an edge‐face k‐coloring of G is a function ? : E(G) ∪ F(G) → {1,…,k} such that, for any two adjacent or incident elements a, bE(G) ∪ F(G), ?(a) ≠ ?(b). Let χe(G), χef(G), and Δ(G) denote the edge chromatic number, the edge‐face chromatic number, and the maximum degree of G, respectively. In this paper, we prove that χef(G) = χe(G) = Δ(G) for any 2‐connected simple plane graph G with Δ (G) ≥ 24. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

12.
Stiebitz [Decomposing graphs under degree constraints, J. Graph Theory 23 (1996) 321-324] proved that if every vertex v in a graph G has degree d(v)?a(v)+b(v)+1 (where a and b are arbitrarily given nonnegative integer-valued functions) then G has a nontrivial vertex partition (A,B) such that dA(v)?a(v) for every vA and dB(v)?b(v) for every vB. Kaneko [On decomposition of triangle-free graphs under degree constraints, J. Graph Theory 27 (1998) 7-9] and Diwan [Decomposing graphs with girth at least five under degree constraints, J. Graph Theory 33 (2000) 237-239] strengthened this result, proving that it suffices to assume d(v)?a+b (a,b?1) or just d(v)?a+b-1 (a,b?2) if G contains no cycles shorter than 4 or 5, respectively.The original proofs contain nonconstructive steps. In this paper we give polynomial-time algorithms that find such partitions. Constructive generalizations for k-partitions are also presented.  相似文献   

13.
For a set \({\mathcal{S}}\) of positive integers, a spanning subgraph F of a graph G is called an \({\mathcal{S}}\) -factor of G if \({\deg_F(x) \in \mathcal{S}}\) for all vertices x of G, where deg F (x) denotes the degree of x in F. We prove the following theorem on {a, b}-factors of regular graphs. Let r ≥ 5 be an odd integer and k be either an even integer such that 2 ≤ k < r/2 or an odd integer such that r/3 ≤ kr/2. Then every r-regular graph G has a {k, rk}-factor. Moreover, for every edge e of G, G has a {k, rk}-factor containing e and another {k, rk}-factor avoiding e.  相似文献   

14.
Let G be a graph of order n, and n = Σki=1 ai be a partition of n with ai ≥ 2. In this article we show that if the minimum degree of G is at least 3k−2, then for any distinct k vertices v1,…, vk of G, the vertex set V(G) can be decomposed into k disjoint subsets A1,…, Ak so that |Ai| = ai,viisAi is an element of Ai and “the subgraph induced by Ai contains no isolated vertices” for all i, 1 ≥ ik. Here, the bound on the minimum degree is sharp. © 1997 John Wiley & Sons, Inc.  相似文献   

15.
Spanning connectivity of graphs has been intensively investigated in the study of interconnection networks (Hsu and Lin, Graph Theory and Interconnection Networks, 2009). For a graph G and an integer s > 0 and for ${u, v \in V(G)}$ with u ≠ v, an (s; u, v)-path-system of G is a subgraph H consisting of s internally disjoint (u,v)-paths. A graph G is spanning s-connected if for any ${u, v \in V(G)}$ with u ≠ v, G has a spanning (s; u, v)-path-system. The spanning connectivity κ*(G) of a graph G is the largest integer s such that G has a spanning (k; u, v)-path-system, for any integer k with 1 ≤ k ≤ s, and for any ${u, v \in V(G)}$ with u ≠ v. An edge counter-part of κ*(G), defined as the supereulerian width of a graph G, has been investigated in Chen et al. (Supereulerian graphs with width s and s-collapsible graphs, 2012). In Catlin and Lai (Graph Theory, Combinatorics, and Applications, vol. 1, pp. 207–222, 1991) proved that if a graph G has 2 edge-disjoint spanning trees, and if L(G) is the line graph of G, then κ*(L(G)) ≥ 2 if and only if κ(L(G)) ≥ 3. In this paper, we extend this result and prove that for any integer k ≥ 2, if G 0, the core of G, has k edge-disjoint spanning trees, then κ*(L(G)) ≥ k if and only if κ(L(G)) ≥ max{3, k}.  相似文献   

16.
It is shown that if G is a graph of order n with minimum degree δ(G), then for any set of k specified vertices {v1,v2,…,vk} ? V(G), there is a 2‐factor of G with precisely k cycles {C1,C2,…,Ck} such that viV(Ci) for (1 ≤ ik) if or 3k + 1 ≤ n ≤ 4k, or 4kn ≤ 6k ? 3,δ(G) ≥ 3k ? 1 or n ≥ 6k ? 3, . Examples are described that indicate this result is sharp. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 188–198, 2003  相似文献   

17.
In this article, we study cycle coverings and 2-factors of a claw-free graph and those of its closure, which has been defined by the first author (On a closure concept in claw-free graphs, J Combin Theory Ser B 70 (1997), 217–224). For a claw-free graph G and its closure cl(G), we prove: (1) V(G) is covered by k cycles in G if and only if V(cl(G)) is covered by k cycles of cl(G); and (2) G has a 2-factor with at most k components if and only if cl(G) has a 2-factor with at most k components. © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 109–117, 1999  相似文献   

18.
A hamiltonian graph G of order n is k-ordered, 2 ≤ kn, if for every sequence v1, v2, …, vk of k distinct vertices of G, there exists a hamiltonian cycle that encounters v1, v2, …, vk in this order. Theorems by Dirac and Ore, presenting sufficient conditions for a graph to be hamiltonian, are generalized to k-ordered hamiltonian graphs. The existence of k-ordered graphs with small maximum degree is investigated; in particular, a family of 4-regular 4-ordered graphs is described. A graph G of order n ≥ 3 is k-hamiltonian-connected, 2 ≤ kn, if for every sequence v1, v2, …, vk of k distinct vertices, G contains a v1-vk hamiltonian path that encounters v1, v2,…, vk in this order. It is shown that for k ≥ 3, every (k + 1)-hamiltonian-connected graph is k-ordered and a result of Ore on hamiltonian-connected graphs is generalized to k-hamiltonian-connected graphs. © 1997 John Wiley & Sons, Inc.  相似文献   

19.
A digraph G = (V, E) is primitive if, for some positive integer k, there is a uv walk of length k for every pair u, v of vertices of V. The minimum such k is called the exponent of G, denoted exp(G). The exponent of a vertex uV, denoted exp(u), is the least integer k such that there is a uv walk of length k for each vV. For a set XV, exp(X) is the least integer k such that for each vV there is a Xv walk of length k, i.e., a uv walk of length k for some uX. Let F(G, k) : = max{exp(X) : |X| = k} and F(n, k) : = max{F(G, k) : |V| = n}, where |X| and |V| denote the number of vertices in X and V, respectively. Recently, B. Liu and Q. Li proved F(n, k) = (nk)(n − 1) + 1 for all 1 ≤ kn − 1. In this article, for each k, 1 ≤ kn − 1, we characterize the digraphs G such that F(G, k) = F(n, k), thereby answering a question of R. Brualdi and B. Liu. We also find some new upper bounds on the (ordinary) exponent of G in terms of the maximum outdegree of G, Δ+(G) = max{d+(u) : uV}, and thus obtain a new refinement of the Wielandt bound (n − 1)2 + 1. © 1998 John Wiley & Sons, Inc. J. Graph Theory 28: 215–225, 1998  相似文献   

20.
The adaptable choosability number of a multigraph G, denoted cha(G), is the smallest integer k such that every edge labeling of G and assignment of lists of size k to the vertices of G permits a list coloring of G in which no edge e=uv has both u and v colored with the label of e. We show that cha grows with ch, i.e. there is a function f tending to infinity such that cha(G)≥f(ch(G)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号