首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fringe element reconstruction technique for tracking the free surface in three‐dimensional incompressible flow analysis was developed. The flow field was calculated by the mixed formulation based on a four‐node tetrahedral element with a bubble function at the centroid (P1+/P1). Since an Eulerian approach was employed in this study, the flow front interface was advected by the flow through a fixed mesh. For accurate modelling of interfacial movement, a fringe element reconstruction method developed can provide not only an accurate treatment of material discontinuity but also surface tension across the interface. The effect of surface tension was modelled by imposing tensile stress directly on the constructed surface elements at the flow front interface. To verify the numerical approach developed, the developed algorithm was applied to two examples whose solutions are available in references. Good agreement was obtained between the simulation results and these solutions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
The purpose of this paper is to investigate the effect of a non-uniform mesh in two dimensions (2D). A change in mesh size will, in general, result in spurious refraction (and reflection) which is entirely numerical (rather than physical) in origin. To facilitate the analysis, the mesh geometry has been highly simplified in that only a single change in mesh size is considered. The analysis is based on a finite element wave model. The domain consists of two conterminous regions discernible only by their different nodal spacings in the x-direction. The interface between the two regions is internal to the mesh and is a straight line. The model is based upon the Crank-Nicolson linear finite element scheme applied to the second order wave equation. The results of the analysis are confirmed by numerical experiments. It is shown that under particular numerical conditions total internal reflection may occur and when this is the case, the transmitted wave is evanescent. An analysis of the energy flux associated with the incident, reflected and trasmitted waves shows that energy is conserved across the interface between the two regions.  相似文献   

3.
A numerical model has been developed for the 2D simulation of free surface flows or, more generally speaking, moving interface ones. The bulk fluids on both sides of the interface are taken into account in simulating the incompressible laminar flow state. In the case of heat transfer the whole system, i.e. walls as well as possible obstacles, is considered. This model is based on finite element analysis with an Eulerian approach and an unstructured fixed mesh. A special technique to localize the interface allows its temporal evolution through this mesh. Several numerical examples are presented to demonstrate the capabilities of the model. © 1997 by John Wiley & Sons, Ltd.  相似文献   

4.
在实际工程计算中,存在大量的弱不连续问题,如含夹杂问题。利用通常的有限元方法,为确保界面上各点满足给定高精度,往往需要采用全域网格加密或全域提高单元阶次的方法,这将会导致计算机的物理内存和CPU时间的剧烈增长。p-型自适应有限元方法是一种能通过自适应分析逐步增加单元阶次以改善计算精度的数值方法。本文,我们针对弱不连续问题设计了相应的p-型自适应有限元方法,重点讨论了容许误差控制标准对界面上各点计算结果的影响,并对几类典型的弱不连续问题进行了数值计算与模拟。数值结果表明,本文设计的p-型自适应有限元方法对求解弱不连续问题是非常有效的,用较少的单元得到精度可靠的数值结果,可大大提高其有限元分析效率。  相似文献   

5.
In this paper, strong discontinuities are embedded in finite elements to describe fracture in quasi-brittle materials. A new numerical formulation is introduced in which the displacement jumps do not need to be homogeneous within each finite element. Both the crack path and the displacement jumps are continuous across element boundaries. This formulation is compared with the discrete approach, in which interface elements are inserted to model the discontinuities, as well as with other embedded discontinuity approaches and with the partition of unity method. Numerical results have been obtained with relatively coarse meshes, which compare well with experimental results and with the results obtained from analyzes with interface elements.  相似文献   

6.
Multi-Material Arbitrary Lagrangian–Eulerian (ALE) finite element methods can solve large deformations in fast dynamic problems like explosions because the mesh motion can be independent of the material motion. However materials must flow between elements and this advection involves numerical dissipations. The rezoning mesh method presented in this paper was designed to reduce these numerical errors for shock wave propagation. The mesh moves to refine the elements near the shock front. This refinement limits the advection fluxes and so the numerical diffusion. This technique is applied to the numerical simulations of airblast problems for which a parameter controlling the mesh refinement is studied.  相似文献   

7.
The hydrodynamics of fluid mixtures is receiving more and more attention in many science and engineering applications. Within the techniques for dealing with front displacements and moving boundaries between different density and/or viscosity fluids, phase fields are a class of models in which a diffusive transition region is taken into account instead of a steep interface. Although these models have a physical motivation, they require the definition of extra parameters. In order to make it less parameter dependent, the classic Allen–Cahn phase field model is modified, exploring its similarities with residual‐based discontinuity‐capturing schemes, making the phase field equation dependent on its own residual. We solve the coupling between incompressible viscous fluid flow and the phase field advective–diffusive–reactive transport to simulate the main processes in interface tension and/or buoyancy driven problems. For the solution of the Navier–Stokes and transport equations, we use a stabilized finite element formulation. The implementation has been performed using the libMesh finite element library, written in C++ , which provides support for adaptive mesh refinement and coarsening. A chemical convection benchmark problem is used to validate the proposed model, and then we solve two bubble interaction problems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
成型充填过程的ALE有限元模拟   总被引:2,自引:0,他引:2  
在ALE框架中提出了一个用于成型充填过程有限元数值模拟的模型。应用ALE参考构形及ALE参考粒子速度描写充填过程中的熔体质量运动。摒弃了Hele-Shaw近似假定,因而所提出的模型能用于非薄壁型腔中高分子材料充填过程的数值模拟。应用基于时域分步算法的Taylor-Galerkin方法,对控制成型充填过程的守恒方程建立了弱形式。对移动自由面附近的充填材料区构造了网格生成算法与网格重划分方案。给出了在几种不同形状的典型腔体中充填过程的数值模拟结果,表明了所提出的ALE有限元模型模拟充填过程的有效性。  相似文献   

9.
The objective of this contribution is to develop a thermodynamically consistent theory for general imperfect coherent interfaces in view of their thermomechanical behavior and to establish a unified computational framework to model all classes of such interfaces using the finite element method. Conventionally, imperfect interfaces with respect to their thermal behavior are often restricted to being either highly conducting (HC) or lowly conducting (LC) also known as Kapitza. The interface model here is general imperfect in the sense that it allows for a jump of the temperature as well as for a jump of the normal heat flux across the interface. Clearly, in extreme cases, the current model simplifies to HC and LC interfaces. A new characteristic of the general imperfect interface is that the interface temperature is an independent degree of freedom and, in general, is not a function of only temperatures across the interface. The interface temperature, however, must be computed using a new interface material parameter, i.e., the sensitivity. It is shown that according to the second law, the interface temperature may not necessarily be the average of (or even between) the temperatures across the interface. In particular, even if the temperature jump at the interface vanishes, the interface temperature may be different from the temperatures across the interface. This finding allows for a better, and somewhat novel, understanding of HC interfaces. That is, a HC interface implies, but is not implied by, the vanishing temperature jump across the interface. The problem is formulated such that all types of interfaces are derived from a general imperfect interface model, and therefore, we establish a unified finite element framework to model all classes of interfaces for general transient problems. Full details of the novel numerical scheme are provided. Key features of the problem are then elucidated via a series of three-dimensional numerical examples. Finally, we recall since the influence of interfaces on the overall response of a body increases as the scale of the problem decreases, this contribution has certain applications to nano-composites and also thermal interface materials.  相似文献   

10.
Nowadays, numerical simulation of 3D fatigue crack growth is easily handled using the eXtended Finite Element Method coupled with level set techniques. The finite element mesh does not need to conform to the crack geometry. Most difficulties associated to complex mesh generation around the crack and the re-meshing steps during the possible propagation are hence avoided. A 3D two-scale frictional contact fatigue crack model developed within the X-FEM framework is presented in this article. It allows the use of a refined discretization of the crack interface independent from the underlying finite element mesh and adapted to the frictional contact crack scale. A stabilized three-field weak formulation is also proposed to avoid possible oscillations in the local solution linked to the LBB condition when tangential slip is occurring. Two basic three-dimensional numerical examples are presented. They aim at illustrating the capacities and the high level of accuracy of the proposed X-FEM model. Stress intensity factors are computed along the crack front. Finally an experimental 3D ball/plate fretting fatigue test with running conditions inducing crack nucleation and propagation is modeled. 3D crack shapes defined from actual experimental ones and fretting loading cycle are considered. This latter numerical simulation demonstrates the model ability to deal with challenging actual complex problems and the possibility to achieve tribological fatigue prediction at a design stage based on the fatigue crack modeling.  相似文献   

11.
A new finite element technique for the analysis of wave run-up is presented in this paper. In this finite element approach, the movement of the shoreline is expressed by that of the nodal points at the wave front, and an auto mesh generation technique is effectively used. The present method is tested by the comparison with the experimental result of a channel with uniform slope, and two numerical examples are reported to show the efficiency of this method. As a final example, the tsunami run-up caused by the 1983 Nihonkai-Chubu earthquake is analysed and compared with actual records of the flooded area.  相似文献   

12.
在嵌入非连续有限元的基本思想下,提出一类附加位移形函数———指数型间断函数,来模拟由于非连续结构,如裂纹和节理,所导致的位移不连续规律,该附加函数是以到间断处的垂直距离为自变量,且随距离的增大而呈指数衰减的函数.指数型间断函数具有在数学上的便于积分和求导的优点,且比阶梯间断函数更能反映实际破裂后的变形情况.本文用弱解形式推导了嵌入非连续有限元格式,编制了二维4节点和三维8节点的嵌入非连续等参有限元程序,并分别给出了算例.算例表明在模拟裂纹追踪时,指数型间断函数的嵌入非连续等参有限元法可行且有效.  相似文献   

13.
A finite thickness band method for ductile fracture analysis   总被引:3,自引:0,他引:3  
We present a finite element method with a finite thickness embedded weak discontinuity to analyze ductile fracture problems. The formulation is restricted to small geometry changes. The material response is characterized by a constitutive relation for a progressively cavitating elastic–plastic solid. As voids nucleate, grow and coalesce, the stiffness of the material degrades. An embedded weak discontinuity is introduced when the condition for loss of ellipticity is met. The resulting localized deformation band is given a specified thickness which introduces a length scale thus providing a regularization of the post-localization response. Also since the constitutive relation for a progressively cavitation solid is used inside the band in the post-localization regime, the traction-opening relation across the band depends on the stress triaxiality. The methodology is illustrated through several example problems including mode I crack growth and localization and failure in notched bars. Various finite element meshes and values of the thickness of the localization band are used in the calculations to illustrate the convergence with mesh refinement and the dependence on the value chosen for the localization band thickness.  相似文献   

14.
岩土材料应变局部化的有限元分析方法   总被引:1,自引:0,他引:1  
采用有限单元法分析岩土材料的应变局部化时经常会遇到单元尺寸敏感性问题和网格锁定问题。自适应网格技术能够有效地解决网格锁定问题,但仍然无法克服计算结果对单元尺寸的依赖性,尽管在一维情况下被证明是可行的。复合体理论(均匀化理论)和弱非连续有限元方法可以成功地解决岩土材料的单元尺寸敏感性问题,在一维情况下两类方法实际上是一致的。本文针对岩土材料应变局部化的有限元新技术所存在的若干问题进行了详细的讨论,并给出了有关算例。  相似文献   

15.
A model enabling the detection of damages developing during a low velocity/low energy impact test on laminate composite panels has been elaborated. The ply model is composed of interface type elements to describe matrix cracks and volumic finite elements. This mesh device allows to respect the material orthotropy of the ply and accounts for the discontinuity experimentally observed. Afterwards delaminations are described with interfaces similar to the ones observed with matrix cracks and the coupling between these two damages are established. In the first step, simple stress criteria are used to drive these interface type elements in order to assess the relevance of model principle. Nevertheless, the well known problem of mesh sensitivity of these criteria prevents the use of this model for now as a predictive tool but rather as a qualitative tool. An experimental validation is carried out thanks to impact experimental tests performed by Aboissiere (2003) and a very good match has been found. However, this model could predictivelly be used and would allow to foresee an original method to detect delaminations during an experimental test. This modelling has been successfully tested experimentally and compared to a C-Scan ultrasonic investigation.  相似文献   

16.
17.
提出了一种基于滑移界面耦合技术的旋转电机磁场仿真方法。首先,对旋转电机问题建立等效弱形式,用Lagrange乘子法施加Coulomb规范条件和滑移界面处的磁矢势连续性条件;然后,采用混合单元方法离散整个求解域中的未知量,采用棱边单元法离散滑移界面处的Lagrange矢量乘子,并采用多点约束法耦合滑移界面处的Lagrange标量乘子自由度,该方法无须在旋转电机模型的非匹配网格中构建生成树,即可自动保证磁矢势解的唯一性;最后,采用旋转线圈案例和简化的永磁同步电机案例验证了本文方法的有效性。  相似文献   

18.
In this paper we present a five‐parameter Taylor–Galerkin finite element model to simulate Euler equations in a domain of two dimensions. The introduced free parameters are theoretically determined by employing M‐matrix theory to obtain a physically correct and non‐oscillatory solution in regions containing a sharp solution profile. To improve the computational efficiency and solution accuracy, grids are adaptively added to obtain solutions with fewer mesh points. The discontinuity‐capturing finite element model has been validated against test cases, reproducing analytical solutions to the gas dynamic problems under the current investigation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
针对该问题开展了伪弧长数值算法研究,通过引入弧长参数,使网格按照一定的形式自适应移动,达到在强间断区域自动加密的效果,从而提高网格分辨率。基于伪弧长算法编写了二维程序,并对程序进行人为解方法验证。将伪弧长算法和直接有限体积法的数值结果进行对比,通过误差分析,显示出伪弧长算法能有效提高计算精度。最后将伪弧长算法应用于气相爆轰波在二维管道中的传播问题,研究了波阵面的捕捉效果和爆轰波胞格结构的形成过程。  相似文献   

20.
传统无厚度粘结单元法CFEM (Cohesive finite element method)在模拟脆性材料断裂方面具有很强的优势,但也存在很大问题.一是单元尺寸增大,收敛性变差;二是单元尺寸变小,模型刚度发生折减.为了克服这两个问题,发展了考虑厚度的局部粘结单元法,即在裂纹可能扩展区插入具有一定厚度的粘结面单元.粘结面单元采用拓展虚内键本构(Augmented virtual internal bond)描述.由于考虑了厚度,粘结面交叉处会形成多边形空缺.为了弥补这一空缺,将其看作多边形键元胞,采用离散虚内键模型(Discretized virtual internal bond)对其建模,保证了模型的几何完整性.模拟结果表明,本文方法有效,克服了传统CFEM方法的刚度折减问题,提高了计算稳定性和收敛性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号