首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first-order rate constants, k1, for 1,2-ethanediolysis (within the content of 1,2-ethanediol of 5% to 90%, v/v) and 2-ethoxyethanolysis (within the 2-ethoxyethanol content of 5% to 60%, v/v) of phenyl salicylate, PSH, in alkaline aqueous mixed solvents, fit to a relationship: k1 = k[ROH]T/(1 + K[ROH]T) where k and K represent the secondorder rate constant for the reaction of alkanol, ROH, with ionized phenyl salicylate, PS?, and association constant for the dimerization of ROH, respectively, and [ROH]T is the total concentration of ROH. Similar relationship between k1 and [ROH]T has been found for 1,2-ethanediolysis of PS? studied in mixed solvents containing 1,2-ethanediol and MeCN. In the alkaline aqueous mixed solvents containing 2-ethoxyethanol, the k1-[ROH]T profile reveals the change in the solvent structure of the reaction medium at >60% (v/v) of ROH content. It is proposed that alkanols exist in polymeric form, (ROH)n, and the alkanolysis of PS? involves the pre-equilibrium formation of monomeric ROH from (ROH)n, followed by an intramolecular general base-catalyzed nucleophilic attack at carbonyl carbon of ester. A slight negative KCl salt- and slight positive n-Bu4NI salt-effect are obtained for 1,2-ethanediolysis while a significant positive n-Bu4NI salt-effect is obtained for 2-ethoxyethanolysis of PS?.  相似文献   

2.
The alkanolysis of ionized phenyl salicylate, PS?, has been studied in the presence and absence of micelles of sodium dodecyl sulphate, SDS, at 0.05 M NaOH, 30 or 32°C and within the alkanol, ROH, (ROH = HOCH2CH2OH and CH3OH) contents of 15–74 or 92%, v/v. The alkanolysis of PS? involves intramolecular general base catalysis. At a constant concentration of SDS, [SDS]T, the observed pseudo first-order rate constants, kobs, for the reactions of ROH with PS? obtained at different concentration of ROH, [ROH]T, obey the relationship: kobs = k[ROH]T/(1 + KA[ROH]T) where k is the apparent second-order rate constant and KA is the association constant for dimerization of ROH molecules. Both k and KA decrease with increase in [SDS]T. At a constant [ROH]T, the rate constants, kobs, show a decrease of nearly 2-fold with increase in [SDS]T from 0.0–0.3M. These results are explained in terms of pseudo-phase model of micelle. The rate constants for alkanolysis of PS? in micellar pseudophase are insignificant compared with the corresponding rate constants in aqueous-alkanol pseudophase. This is attributed largely to considerably low value of [ROH] in the specific micellar environment where micellar bound PS? molecules exist. The increase in [ROH]T decrease the value of the binding constant of PS? with SDS micelle. The effects of anionic micelles on the rates of alkanolysis of PS? are explained in terms of the porous cluster micellar structure.  相似文献   

3.
The kinetic characteristics of CO, HC and NOx reaction on different kinds of three way catalysts (TWC) has been investigated by using a fixed bed reactor. It was concluded that the three-way reaction on noble metal catalysts is controlled by internal diffusion at high space velocity 16×104 h–1. On non-noble metal catalysts internal diffusion control prevails at space velocities (S.V.) <4×104 h–1 and kinetic control occurs at S.V.> 4×104 h–1. On non-noble metal catalysts containing a small amount of a noble metal, the kinetic control region of the three-way reaction shifts to higher space velocity.  相似文献   

4.
Pseudo‐first‐order rate constants (kobs) for the cleavage of phthalimide in the presence of piperidine (Pip) vary linearly with the total concentration of Pip ([Pip]T) at a constant content of methanol in mixed aqueous solvents containing 2% v/v acetonitrile. Such linear variation of kobs against [Pip]T exists within the methanol content range 10%–∼80% v/v. The change in kobs with the change in [Pip]T at 98% v/v CH3OH in mixed methanol‐acetonitrile solvent shows the relationship: kobs = k[Pip]T + k[Pip], where respective k and k represent apparent second‐order and third‐order rate constants for nucleophilic and general base‐catalyzed piperidinolysis of phthalimide. The values of kobs, obtained within [Pip]T range 0.02–0.40 M at 0.03 M NaOH and 20 as well as 50% v/v CH3OH reveal the relationship: kobs = k0/(1 + {kn[Pip]/kOX[OX]T}), where k0 is the pseudo‐first‐order rate constant for hydrolysis of phthalimide, kn and kOX represent nucleophilic second‐order rate constants for the reaction of Pip with phthalimide and for the XO‐catalyzed cyclization of N‐piperidinylphthalamide to phthalimide, respectively, and [OX]T = [NaOH] + [OXre], where [OXre] = [OHre] + [CH3Ore]. The reversible reactions of Pip with H2O and CH3OH produce OHre and CH3Ore ions. The effects of mixed methanol‐water solvents on the rates of piperidinolysis of PTH reveal a nonlinear decrease in k with the increase in the content of methanol. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 33: 29–40, 2001  相似文献   

5.
The energetics of the phenolic O-H bond in a series of 2- and 4-HOC 6H 4C(O)Y (Y = H, CH3, CH 2CH=CH2, C[triple bond]CH, CH2F, NH2, NHCH 3, NO2, OH, OCH3, OCN, CN, F, Cl, SH, and SCH3) compounds and of the intramolecular O...H hydrogen bond in 2-HOC 6H 4C(O)Y, was investigated by using a combination of experimental and theoretical methods. The standard molar enthalpies of formation of 2-hydroxybenzaldehyde (2HBA), 4-hydroxybenzaldehyde (4HBA), 2'-hydroxyacetophenone (2HAP), 2-hydroxybenzamide (2HBM), and 4-hydroxybenzamide (4HBM), at 298.15 K, were determined by micro- or macrocombustion calorimetry. The corresponding enthalpies of vaporization or sublimation were also measured by Calvet drop-calorimetry and Knudsen effusion measurements. The combination of the obtained experimental data led to Delta f H m (o)(2HBA, g) = -238.3 +/- 2.5 kJ.mol (-1), DeltafHm(o)(4HBA, g) = -220.3 +/- 2.0 kJ.mol(-1), Delta f H m (o)(2HAP, g) = -291.8 +/- 2.1 kJ.mol(-1), DeltafHm(o)(2HBM, g) = -304.8 +/- 1.5 kJ.mol (-1), and DeltafHm(o) (4HBM, g) = -278.4 +/- 2.4 kJ.mol (-1). These values, were used to assess the predictions of the B3LYP/6-31G(d,p), B3LYP/6-311+G(d,p), B3LYP/aug-cc-pVDZ, B3P86/6-31G(d,p), B3P86/6-311+G(d,p), B3P86/aug-cc-pVDZ, and CBS-QB3 methods, for the enthalpies of a series of isodesmic gas phase reactions. In general, the CBS-QB3 method was able to reproduce the experimental enthalpies of reaction within their uncertainties. The B3LYP/6-311+G(d,p) method, with a slightly poorer accuracy than the CBS-QB3 approach, achieved the best performance of the tested DFT models. It was further used to analyze the trends of the intramolecular O...H hydrogen bond in 2-HOC 6H 4C(O)Y evaluated by the ortho-para method and to compare the energetics of the phenolic O-H bond in 2- and 4-HOC 6H 4C(O)Y compounds. It was concluded that the O-H bond "strength" is systematically larger for 2-hydroxybenzoyl than for the corresponding 4-hydroxybenzoyl isomers mainly due to the presence of the intramolecular O...H hydrogen bond in the 2-isomers. The observed differences are, however, significantly dependent on the nature of the substituent Y, in particular, when an intramolecular H-bond can be present in the radical obtained upon cleavage of the O-H bond.  相似文献   

6.
Kinetic study on the cleavage of N‐phenylphthalimide (NPhPT) in the presence of 0.05 M NH2NH2 and mixed H2O‐CH3CN solvents reveals the occurrence of reaction scheme where A, B, C, C1, An, E, and F represent NPhPT, o‐CO?2C6H4CONHC6H5, o‐CONHNH2C6H4‐ CONHC6H5, N‐aminophthalimide, aniline, o‐CO?2C6H4CONHNH2, and o‐CONHNH2C6H4‐CONHNH2, respectively. But, in the presence of either nonbuffered ?0.20 M NH2NH2 hydrazine buffer of pH ~7.30–8.26 with total buffer concentration ([Buf]T) of >0.02 M, further conversion of F to 2,3‐dihydrophthalazine‐1,4‐dione (DHPD) has been detected depending upon the length of the reaction time (t), the values of [Buf]T, and pH. It has been shown that the rate of conversion of C1 to F is much faster than that of C to C1 which is much faster than that of F to DHPD. The reaction step A → C involves general base (GB) catalysis, while step C → C1 seems to involve specific base–general acid (GA) and GB‐GB catalysis. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 147–161, 2005  相似文献   

7.
8.
The effects of the concentration of inert organic salts, [MX], (MX=2-, 3- and 4-BrBzNa with BrBzNa=BrC(6)H(4)CO(2)Na) on the rate of piperidinolysis of ionized phenyl salicylate (PS(-)) have been rationalized in terms of pseudophase micellar (PM) coupled with an empirical equation. The appearance of induction concentration in the plots of k(obs) versus [MX] (where k(obs) is pseudo-first-order rate constants for the reaction of piperidine (Pip) with PS(-)) is attributed to the occurrence of two or more than two independent ion exchange processes between different counterions at the cationic micellar surface. The derived kinetic equation, in terms of PM model coupled with an empirical equation, gives empirical parameters F(X/S) and K(X/S) whose magnitudes lead to the calculation of usual ion exchange constant K(X)(Br) (=K(X)/K(Br) with K(X) and K(Br) representing cationic micellar binding constants of counterions X(-) and Br(-), respectively). The value of F(X/S) measures the fraction of S(-) (=PS(-)) ions transferred from the cationic micellar pseudophase to the aqueous phase by the optimum value of [MX] due to ion exchange X(-)/S(-). Similarly, the value of K(X/S) measures the ability of X(-) ions to expel S(-) ions from cationic micellar pseudophase to aqueous phase through ion exchange X(-)/S(-). This rather new technique gives the respective values of K(X)(Br) as 8.8±0.3, 71±6 and 62±5 for X(-)=2-, 3- and 4-BrBz(-). Rheological measurements reveal the shear thinning behavior of all the surfactant solutions at 15mM CTABr (cetyltrimethylammonium bromide) indicating indirectly the presence of rodlike micelles. The plots of shear viscosity (η) at a constant shear rate (γ), i.e. η(γ), versus [MX] at 15 mM CTABr exhibit maxima for MX=3-BrBzNa and 4-BrBzNa while for MX=2-BrBzNa, the viscosity maximum appears to be missing. Such viscosity maxima are generally formed in surfactant solutions containing long stiff and flexible rodlike micelles with entangled and branched/multiconnected networks. Thus, 15 mM CTABr solutions at different [MX] contain long stiff and flexible rodlike micelles for MX=3- and 4-BrBzNa and short rodlike micelles for MX=2-BrBzNa.  相似文献   

9.
The reflected shock tube technique with multipass absorption spectrometric detection of OH-radicals at 308 nm, corresponding to a total path length of approximately 2.8 m, has been used to study the reaction CH3 + O2 CH2O + OH. Experiments were performed between 1303 and 2272 K, using ppm quantities of CH3I (methyl source) and 5-10% O2, diluted with Kr as the bath gas at test pressures less than 1 atm. We have also reanalyzed our earlier ARAS measurements for the atomic channel (CH3 + O2 --> CH3O + O) and have compared both these results with other earlier studies to derive a rate expression of the Arrhenius form. The derived expressions, in units of cm3 molecule(-1) s(-1), are k = 3.11 x 10(-13) exp(-4953 K/T) over the T-range 1237-2430 K, for the OH-channel, and k = 1.253 x 10(-11) exp(-14241 K/T) over the T-range 1250-2430 K, for the O-atom channel. Since CH2O is a major product in both reactions, reliable rates for the reaction CH2O + O2 --> HCO + HO2 could be derived from [OH]t and [O]t experiments over the T-range 1587-2109 K. The combined linear least-squares fit result, k = 1.34 x 10(-8) exp(-26883 K/T) cm3 molecule(-1) s(-1), and a recent VTST calculation clearly overlap within the uncertainties in both studies. Finally, a high sensitivity for the reaction OH + O2 --> HO2 + O was noted at high temperature in the O-atom data set simulations. The values for this obtained by fitting the O-atom data sets at later times (approximately 1.2 ms) again follow the Arrhenius form, k = 2.56 x 10(-10) exp(-24145 K/T) cm3 molecule(-1) s(-1), over the T-range, 1950-2100 K.  相似文献   

10.
11.
A metal-organic framework (MOF) based on Pt, Y, and 2,2'-bipyridine-5,5'-dicarboxylate (BPDC), stable up to 400 degrees C, has been synthesized and characterized. In this MOF, the Pt centers are coordinated to Cl and the N atoms of the BPDC unit, giving a local environment similar to that found in a series of Pt-organic complexes with catalytic activity toward C-H bond cleavage of alkanes. This new material is a heterogeneous counterpart to the corresponding metal-organic complex. The structure, determined by single-crystal XRD data, is the repetition of three covalently bonded layers. These layers form a block, which is stacking as an (a)(b)(c) sequence along the crystallographic b-axis. Each layer contains the Pt-organic unit, while Y atoms represent the connection between adjacent layers. No covalent connection is present between layer (a) of a block and layer (c) of an adjacent block. EXAFS (BM29 at the ESRF) analysis supports the XRD data. As this MOF crystallizes under hydrothermal conditions, water acts both as solvent and as a direct ligand of Y. Accessibility to the metal centers is demonstrated by reversible water desorption/readsorption, as determined by TPA/TPD, FTIR, UV-vis, EXAFS, and XANES. Importantly, the results show that the as-synthesized material will not suffer a permanent loss in porosity upon solvent removal. In addition to water, methanol, ethanol, and acetonitrile can also access the internal void of the dehydrated phase.  相似文献   

12.
Kinetic study on the cleavage of N‐(4′‐methoxyphenyl)phthalamic acid (NMPPAH) in mixed H2O‐CH3CN and H2O‐1,4‐dioxan solvents containing 0.05 M HCl reveals the formation of phthalic anhydride (PAn)/phthalic acid (PA) as the sole or major product. Pseudo first‐order rate constants (k1) for the conversion of NMPPAH to PAn decrease nonlinearly from 60.4 × 10?5 to 2.64 × 10?5 s?1 with the increase in the contents of 1,4‐dioxan from 10 to 80% v/v in mixed aqueous solvents. The rate of cleavage of NMPPAH in mixed H2O‐CH3CN solvents at ≥50% v/v CH3CN follows an irreversible consecutive reaction path: NMPPAH PA. The values of k1 are larger in H2O‐CH3CN than in H2O‐1,4‐dioxan solvents. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 316–325, 2004  相似文献   

13.
Three new isostructural materials Ln(TMA)(DMU)2 (Ln(C9O6H3)((CH3NH)2CO)2; Ln: La 1, Nd 2, Eu 3; TMA: trimesate, DMU: dimethylurea) have been synthesised ionothermally using a choline chloride/dimethylurea deep eutectic mixture as the solvent. Normally in ionothermal synthesis the urea portion of the deep eutectic solvent is unstable, breaking down to release ammonium cations that act as templates. In the case of 13, however, the dimethylurea remains intact and is incorporated into the final structure.  相似文献   

14.
采用1HNMR谱研究了通式为〔M3ⅢO(OOCR)6L3〕+(M=Cr,Fe,Mn;R=CH3,C2H5,CH2NH2;L=C5H5N,H2O)的一系列氧心三核过渡金属配合物,主要考察其1H化学位移随金属、配体、温度、溶剂等因素变化而变化的规律。结果表明,骨架金属对化学位移的影响最大,M3O中的3个金属离子间存在反铁磁交换相互作用。对Mn配合物中顺磁中心对化学位移和线宽的影响机制的研究表明,其1H各向同性位移主要由接触作用贡献  相似文献   

15.
在恒定1,2-丙二醇摩尔分数X为0.05的混合溶剂中,在5-45℃温度范围内测定无液接电池Pt,H2(1 atm)HCl(ma),1,2-C3H5(OH)2(X),H2O(1-X)|AgCl-Ag(A)和Pt,H2(1 atm)|HCl(ma),NaCl(mb),1,2-C3H5(OH)2(X),H2O(1-X)|AgCl-Ag (B)的电动势.利用电池A的电动势确定混合溶剂中Ag-AgCl电极的标准电极电势,利用电池B的电动势确定了HCl在混合溶剂的多组分电解质溶液中的活度系数γA.指出了在恒定总离子强度下HCl仍然服从Harned规则,在溶液组成恒定时,logγA是温度T的线性函数.HCl的相对偏摩尔焓遵守类似的Harned规则,计算了HCl的一级、二级和总介质效应.  相似文献   

16.
A POMs-based 3D zeolike ionic crystal 1, {[Co(dpdo)2(CH3CN)(H2O)2]2(SiMo12O40)- (HEO)2}n (dpdo = 4,4'-bipyridine-N,N'-dioxide), was constructed via self-assembly by embedding Keggintype [SiMo12O40]^4- polyanions within the intercrystalline voids as pillars and structurally characterized. The crystal structure was determined by single-crystal X-ray diffraction. The crystal is of triclinic, space group P1 with a = 11.430(3), b = 12.242(3), c = 14.279(3)A, α = 106.196(4),β = 94.316(4), γ = 98.294(3)°, V = 1884.5(7)A^3 Z = 1, C44H50N10O54CoEMo12Si, Mr = 2880.17, Dc = 2.538 g/cm^3, p = 2.484 mm^-1,F(000) = 1388, the final R = 0.0383 and wR = 0.1096 for 7753 observed reflections with I 〉 2σ(I). Flack factor is 0.22(3). Compound 1 is a pillar-layered framework with the [SiMo12O40]^4- anions linearly located on the square voids between the 2D bilayers which are formed by the dpdo ligands and cobalt(II) ions.  相似文献   

17.
18.
19.
1 INTRODUCTION Manganese has been implicated as an essential part of the active center in various manganese enzymes. Various nuclearities have been observed from mononuclear atom in superoxide dismutase [1] to the tetranuclear atom of oxygen evolution in photosystem II[2]. The manganese active centers in biological systems are surrounded by O and N coordination sphere[3, 4]. Synthetic efforts have produced a great variety of Mn clusters with varying nuclearity and oxidation states. Si…  相似文献   

20.
Abstract

[Cu(en){B6O7(OH)6}].3H2O (1) (en = 1,2-diaminoethane), obtained as a crystalline solid in low yield (31%) after prolonged standing of an aqueous solution initially containing [Cu(en)2](OH)2 and B(OH)3 (1:7 ratio), was characterized by thermal analysis (TGA/DSC), 11B NMR and IR spectroscopy, powder XRD, and single-crystal XRD studies, and magnetic susceptibility measurements. The single-crystal X-ray diffraction revealed that the oxidoborate complex is a 1D coordination polymer with the hexaborate(2-) ligand bridging two hexacoordinate Cu(II) centers, in an alternating a fac-tridentate (κ3-O) and monodentate (κ1-O) arrangement. Cu-O coordination bonds and extensive H-bonding networks promote and stabilize the self-assembly of [Cu(en){B6O7(OH)6}].3H2O from the Dynamic Combinatorial Libraries of available reactants. [Cu(en){B6O7(OH)6}].3H2O is thermally decomposed to CuB6O10 in air at 700?°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号