首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We establish the existence and stability of multidimensional steady transonic flows with transonic shocks through an infinite nozzle of arbitrary cross-sections, including a slowly varying de Laval nozzle. The transonic flow is governed by the inviscid potential flow equation with supersonic upstream flow at the entrance, uniform subsonic downstream flow at the exit at infinity, and the slip boundary condition on the nozzle boundary. Our results indicate that, if the supersonic upstream flow at the entrance is sufficiently close to a uniform flow, there exists a solution that consists of a C 1,α subsonic flow in the unbounded downstream region, converging to a uniform velocity state at infinity, and a C 1,α multidimensional transonic shock separating the subsonic flow from the supersonic upstream flow; the uniform velocity state at the exit at infinity in the downstream direction is uniquely determined by the supersonic upstream flow; and the shock is orthogonal to the nozzle boundary at every point of their intersection. In order to construct such a transonic flow, we reformulate the multidimensional transonic nozzle problem into a free boundary problem for the subsonic phase, in which the equation is elliptic and the free boundary is a transonic shock. The free boundary conditions are determined by the Rankine–Hugoniot conditions along the shock. We further develop a nonlinear iteration approach and employ its advantages to deal with such a free boundary problem in the unbounded domain. We also prove that the transonic flow with a transonic shock is unique and stable with respect to the nozzle boundary and the smooth supersonic upstream flow at the entrance.  相似文献   

2.
In this paper, we study the global subsonic irrotational flows in a multi-dimensional (n ≥ 2) infinitely long nozzle with variable cross sections. The flow is described by the inviscid potential equation, which is a second order quasilinear elliptic equation when the flow is subsonic. First, we prove the existence of the global uniformly subsonic flow in a general infinitely long nozzle for arbitrary dimension with sufficiently small incoming mass flux and obtain the uniqueness of the global uniformly subsonic flow. Then we show that there exists a critical value of the incoming mass flux such that a global uniformly subsonic flow exists uniquely, provided that the incoming mass flux is less than the critical value. This gives a positive answer to the problem of Bers on global subsonic irrotational flows in infinitely long nozzles for arbitrary dimension (Bers in Surveys in applied mathematics, vol 3, Wiley, New York, 1958). Finally, under suitable asymptotic assumptions of the nozzle, we obtain the asymptotic behavior of the subsonic flow in far fields by means of a blow-up argument. The main ingredients of our analysis are methods of calculus of variations, the Moser iteration techniques for the potential equation and a blow-up argument for infinitely long nozzles.  相似文献   

3.
In this paper, we study the well-posedness problem on transonic shocks for steady ideal compressible flows through a two-dimensional slowly varying nozzle with an appropriately given pressure at the exit of the nozzle. This is motivated by the following transonic phenomena in a de Laval nozzle. Given an appropriately large receiver pressure P r , if the upstream flow remains supersonic behind the throat of the nozzle, then at a certain place in the diverging part of the nozzle, a shock front intervenes and the flow is compressed and slowed down to subsonic speed, and the position and the strength of the shock front are automatically adjusted so that the end pressure at exit becomes P r , as clearly stated by Courant and Friedrichs [Supersonic flow and shock waves, Interscience Publishers, New York, 1948 (see section 143 and 147)]. The transonic shock front is a free boundary dividing two regions of C 2,α flow in the nozzle. The full Euler system is hyperbolic upstream where the flow is supersonic, and coupled hyperbolic-elliptic in the downstream region Ω+ of the nozzle where the flow is subsonic. Based on Bernoulli’s law, we can reformulate the problem by decomposing the 3 × 3 Euler system into a weakly coupled second order elliptic equation for the density ρ with mixed boundary conditions, a 2 × 2 first order system on u 2 with a value given at a point, and an algebraic equation on (ρ, u 1, u 2) along a streamline. In terms of this reformulation, we can show the uniqueness of such a transonic shock solution if it exists and the shock front goes through a fixed point. Furthermore, we prove that there is no such transonic shock solution for a class of nozzles with some large pressure given at the exit. This research was supported in part by the Zheng Ge Ru Foundation when Yin Huicheng was visiting The Institute of Mathematical Sciences, The Chinese University of Hong Kong. Xin is supported in part by Hong Kong RGC Earmarked Research Grants CUHK-4028/04P, CUHK-4040/06P, and Central Allocation Grant CA05-06.SC01. Yin is supported in part by NNSF of China and Doctoral Program of NEM of China.  相似文献   

4.
The existence and uniqueness of two dimensional steady compressible Euler flows past a wall or a symmetric body are established. More precisely, given positive convex horizontal velocity in the upstream, there exists a critical value \({\rho_{\rm cr}}\) such that if the incoming density in the upstream is larger than \({\rho_{\rm cr}}\), then there exists a subsonic flow past a wall. Furthermore, \({\rho_{\rm cr}}\) is critical in the sense that there is no such subsonic flow if the density of the incoming flow is less than \({\rho_{\rm cr}}\). The subsonic flows possess large vorticity and positive horizontal velocity above the wall except at the corner points on the boundary. Moreover, the existence and uniqueness of a two dimensional subsonic Euler flow past a symmetric body are also obtained when the incoming velocity field is a general small perturbation of a constant velocity field and the density of the incoming flow is larger than a critical value. The asymptotic behavior of the flows is obtained with the aid of some integral estimates for the difference between the velocity field and its far field states.  相似文献   

5.
One-dimensional problems of the flow in a boundary layer of finite thickness on the end face of a model and in a thin viscous shock layer on a sphere are solved numerically for three regimes of subsonic flow past a model with a flat blunt face exposed to subsonic jets of pure dissociated nitrogen in an induction plasmatron [1] (for stagnation pressures of (104–3·104) N/m2 and an enthalpy of 2.1·107 m2/sec2) and three regimes of hypersonic flow past spheres with parameters related by the local heat transfer simulation conditions [2, 3]. It is established that given equality of the stagnation pressures, enthalpies and velocity gradients on the outer edges of the boundary layers at the stagnation points on the sphere and the model, for a model of radius Rm=1.5·10–2 m in a subsonic jet the accuracy of reproduction of the heat transfer to the highly catalytic surface of a sphere in a uniform hypersonic flow is about 3%. For surfaces with a low level of catalytic activity the accuracy of simulation of the nonequilibrium heat transfer is determined by the deviations of the temperatures at the outer edges of the boundary layers on the body and the model. For this case the simulation conditions have the form: dUe/dx=idem, p0=idem, Te=idem. At stagnation pressuresP 02·104 N/m2 irrespective of the catalycity of the surface the heat flux at the stagnation point and the structure of the boundary layer near the axis of symmetry of models with a flat blunt face of radius Rm1.5·10–2 m exposed to subsonic nitrogen jets in a plasmatron with a discharge channel radius Rc=3·10–2 m correspond closely to the case of spheres in hypersonic flows with parameters determined by the simulation conditions [2, 3].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 135–143, March–April, 1990.  相似文献   

6.
The stability of an elastic plate in supersonic gas flow is investigated using asymptotic methods and taking the boundary layer formed on the plate surface into account. It is shown that the effect of the boundary layer can be of two types depending on its profile. In the case of generalized convex profiles (characteristic of accelerated flow) supersonic and subsonic plate oscillations are stabilized and destabilized, respectively. In the case of profiles with a generalized inflection point located in the subsonic part of the layer (characteristic of homogeneous and decelerated flows) supersonic perturbations are destabilized in the thin boundary layer and stabilized when the layer is fairly thick; subsonic perturbations are damped.  相似文献   

7.
In the present paper, a laminar cavity is analysed at very low Mach numbers. The characteristics of core-vortices are proposed and commented. The experiments were performed in an open subsonic wind tunnel using particle image velocimetry (PIV). A rectangular cavity with a length-to-depth ratio of 4 was used (shallow and open type). Three different Reynolds numbers, based on cavity depth and free stream velocity, were examined (Reh=4,000, 9,000 and 13,000). The upstream boundary layer was investigated using classical hot-wire anemometry and was found to be laminar. For each Reynolds number, a total of 1,000 vectors fields were acquired. The results are given in terms of conventional quantities (mean flow velocity, turbulence characteristics, Reynolds shear stress) and also in terms of vortex characteristics (such as probability density function of vortex location, vortex size and vortex circulation). Some of these vortex characteristics are then proposed in a local averaged presentation. The extraction of vortices from instantaneous flow fields has been done through the use of a home-made algorithm based on continuous wavelet analysis.  相似文献   

8.
The effect of local suction of the boundary layer gas near the leading edge of the upper surface of a swept wing (with the sweep anglex=35°) on the extent of the laminar flow region is studied on a large half-model at subsonic velocities. Various experimental methods were used. The data are subjected to a comparative analysis. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 65–73, July–August, 1998.  相似文献   

9.
This paper concerns the well-posedness of a boundary value problem for a quasilinear second order elliptic equation which is degenerate on a free boundary. Such problems arise when studying continuous subsonic–sonic flows in a convergent nozzle with straight solid walls. It is shown that for a given inlet being a perturbation of an arc centered at the vertex of the nozzle and a given incoming mass flux belonging to an open interval depending only on the adiabatic exponent and the length of the arc, there is a unique continuous subsonic–sonic flow from the given inlet with the angle of the velocity orthogonal to the inlet and the given incoming mass flux. Furthermore, the sonic curve of this continuous subsonic–sonic flow is a free boundary, where the flow is singular in the sense that while the speed is C 1/2 Hölder continuous at the sonic state, the acceleration blows up at the sonic state.  相似文献   

10.
The non‐reflective boundary conditions (NRBC) for Navier–Stokes equations originally suggested by Poinsot and Lele (J. Comput. Phys. 1992; 101 :104–129) in Cartesian coordinates are extended to generalized coordinates. The characteristic form Navier–Stokes equations in conservative variables are given. In this characteristic‐based method, the NRBC is implicitly coupled with the Navier–Stokes flow solver and are solved simultaneously with the flow solver. The calculations are conducted for a subsonic vortex propagating flow and the steady and unsteady transonic inlet‐diffuser flows. The results indicate that the present method is accurate and robust, and the NRBC are essential for unsteady flow calculations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
We present a new approach for the Spectral Direct Numerical Simulation (DNS) of Low-Rm wall-bounded magnetohydrodynamic (MHD) flows. The novelty is that instead of using bases similar to the usual Chebyshev polynomials, which are easy to implement but incur heavy computational costs to resolve the Hartmann boundary layers that arise along the walls, we use a basis made of elements that already incorporate flow structures such as anisotropic vortices and Hartmann layers. We show that such a basis can be obtained from the eigenvalue problem of the linear part of the governing equations with the problem’s boundary conditions. Since this basis is not always orthogonal, we develop a spectral method for non-orthogonal bases. We then demonstrate the efficiency of this method on the simple case of a laminar channel flow with periodic forcing. In particular, we show that this method eliminates the computational costs incurred this Hartmann layer, and this for arbitrary high magnetic fields B. We then discuss the application of our method to nonlinear, turbulent flows for which the number of modes required to resolve the flow completely decreases strongly when B increases, instead of increasing as in the case of currently employed Chebyshev-based methods.  相似文献   

12.
The boundary layer in the vicinity of the zero skin-friction point on the leeward symmetry line of a prolate spheroid placed at an angle of attack is considered. The existence of this flow was established by Cebeci et al. (1980) for an angle of attack =40°. The current study is based on the results of Brown (1985) who described the marginal separation in the symmetry plane for a zero skin-friction point and on the results of Zametaev (1989) who included the spatial extension of Brown's solution but without interaction between the boundary layer and the outer flow. It is found that the three-dimensional boundary-layer equations in the vicinity of the zero skin-friction point are reduced to a single nonlinear partial differential equation of hyperbolic type which governs the longitudinal skin-friction component. Smooth solutions of this equation may be found which contain separation lines as well as double-valued regions. It is likely that the latter regions are related to the tip of the separation line obtained as a result of calculations of the full boundary-layer equations. The influence of interaction is also considered, in which case the flow is governed by a partial integro-differential equation. Numerical solutions are given for each of these problems.This study was supported by the United Technologies Research Center  相似文献   

13.
Based on the full mathematical model of a viscous magma melt flow ascending in the gravity field behind a decompression wave front, an unsteady two-dimensional axisymmetric problem of the melt state dynamics at the initial stage of an explosive volcanic eruption and specific features of the flow in the vicinity of the channel wall for the cases of stationary and dynamically increasing viscosity are studied. The evolution of the boundary layer is numerically analyzed for a constant melt viscosity equal to μ = 10 3 , 10 5 , and 10 7 Pa · sec. It is demonstrated that a boundary layer is formed on the wall of the channel with a radius of 100 m as the melt viscosity is changed in the range of 10 3 10 5 Pa · sec, and the boundary layer thickness increases from 2 to 15 m. As the magma viscosity increases to 10 7 Pa · sec, the boundary layer chokes the major part of the channel, thus, locking the flow in the vicinity of the axis of symmetry of the channel almost over the entire channel length. Substantial changes in the flow structure caused by dynamically increasing viscosity are demonstrated by an example of the melt in the channel with a radius of 10 m. By the time t = 1.1 sec, the boundary layer thickness in the channel cross section at a height of approximately 1000 m reaches almost 8 m, the boundary layer acquires the shape similar to a “diaphragm,” penetrates inward the channel by 200 m (with the mass velocity ranging from 0 to 15 m/sec), and locks the flow in a zone with a radius of approximately 2 m around the axis of symmetry of the channel.  相似文献   

14.
The spatio-temporal dynamics of small disturbances in viscous supersonic flow over a blunt flat plate at freestream Mach number M=2.5 is numerically simulated using a spectral approximation to the Navier–Stokes equations. The unsteady solutions are computed by imposing weak acoustic waves onto the steady base flow. In addition, the unsteady response of the flow to velocity perturbations introduced by local suction and blowing through a slot in the body surface is investigated. The results indicate distinct disturbance/shock-wave interactions in the subsonic region around the leading edge for both types of forcing. While the disturbance amplitudes on the wall retain a constant level for the acoustic perturbation, those generated by local suction and blowing experience a strong decay downstream of the slot. Furthermore, the results prove the importance of the shock in the distribution of perturbations, which have their origin in the leading-edge region. These disturbance waves may enter the boundary layer further downstream to excite instability modes.  相似文献   

15.
The idea of hp‐adaptation, which has originally been developed for compact schemes (such as finite element methods), suggests an adaptation scheme using a mixture of mesh refinement and order enrichment based on the smoothness of the solution to obtain an accurate solution efficiently. In this paper, we develop an hp‐adaptation framework for unstructured finite volume methods using residual‐based and adjoint‐based error indicators. For the residual‐based error indicator, we use a higher‐order discrete operator to estimate the truncation error, whereas this estimate is weighted by the solution of the discrete adjoint problem for an output of interest to form the adaptation indicator for adjoint‐based adaptations. We perform our adaptation by local subdivision of cells with nonconforming interfaces allowed and local reconstruction of higher‐order polynomials for solution approximations. We present our results for two‐dimensional compressible flow problems including subsonic inviscid, transonic inviscid, and subsonic laminar flow around the NACA 0012 airfoil and also turbulent flow over a flat plate. Our numerical results suggest the efficiency and accuracy advantages of adjoint‐based hp‐adaptations over uniform refinement and also over residual‐based adaptation for flows with and without singularities.  相似文献   

16.
Up till now the region of three-dimensional separation flows which occur with supersonic flow past obstacles has received insufficient study. Supersonic flow with a Mach number of 2.5 past a cylinder mounted on a plate was studied in [1]. A local zone with supersonic velocities was found in the reverse subsonic flow region ahead of the cylinder. Its presence is explained by the three-dimensional nature of the flow. Similar supersonic zones are not observed in the case of supersonic flow over plane and axisymmetric steps.The present paper presents the results of experimental studies whose objective was refinement of the flow pattern ahead of a cylinder on a plate and the study of the local supersonic zones.The experiments were performed in a supersonic wind tunnel with a freestream Mach number M1=3.11. The 24-mm-diameter cylinder with pressure taps along the generating line was mounted perpendicular to the surface of a sharpened plate. The distance from the plate leading edge to the cylinder axis wasl 0=140 mm. The plate was pressure tapped along the flow symmetry axis. The Reynolds number was Rl 0=u0 l 0/v 1, Rl 0=1.87.107, where u1 andv 1 are the freestream velocity and the kinematic viscosity, respectively. The pressures were measured using a Pilot probe with internal and external diameters of 0.15 and 0.9 mm, respectively.The probe was displaced in the flow symmetry plane at a distance of 1.6 mm from the plate surface and at a distance of 1.1 mm along the leading generator of the cylinder. The flow on the surface of the plate and cylinder was studied with the aid of a visualization composition and the flow past the model was photographed with a schlieren instrument. Typical patterns of the visualization composition distribution and the pressure distribution curves over the plate surface, and also photographs of the flow past the model, are shown in [1].  相似文献   

17.

This study investigates the electromagnetohydrodynamic (EMHD) flow of fractional viscoelastic fluids through a microchannel under the Navier slip boundary condition. The flow is driven by the pressure gradient and electromagnetic force where the electric field is applied horizontally, and the magnetic field is vertically (upward or downward). When the electric field direction is consistent with the pressure gradient direction, the changes of the steady flow rate and velocity with the Hartmann number Ha are irrelevant to the direction of the magnetic field (upward or downward). The steady flow rate decreases monotonically to zero with the increase in Ha. In contrast, when the direction of the electric field differs from the pressure gradient direction, the flow behavior depends on the direction of the magnetic field, i.e., symmetry breaking occurs. Specifically, when the magnetic field is vertically upward, the steady flow rate increases first and then decreases with Ha. When the magnetic field is reversed, the steady flow rate first reduces to zero as Ha increases from zero. As Ha continues to increase, the steady flow rate (velocity) increases in the opposite direction and then decreases, and finally drops to zero for larger Ha. The increase in the fractional calculus parameter α or Deborah number De makes it take longer for the flow rate (velocity) to reach the steady state. In addition, the increase in the strength of the magnetic field or electric field, or in the pressure gradient tends to accelerate the slip velocity at the walls. On the other hand, the increase in the thickness of the electric double-layer tends to reduce it.

  相似文献   

18.
Plane subsonic potential flows near finite and semi-infinite bodies, symmetrical about thex axis directed along the velocity of the incident flow, are considered. The shape of the isolines of the velocity modulus and the angle of velocity vector inclination to the symmetry axis at large distances from the bodies is found. Kazan. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 132–144, May–June, 2000. The work was financially supported by the Russian Foundation for Basic Research (project No. 99-01-00169).  相似文献   

19.
Numerical methods, based on first order difference schemes are used to investigate features of three-dimensional subsonic and supersonic flows of an inviscid non-heat-conducting gas in control jets. Elements of the nozzle channels considered are axisymmetric, and flow symmetry arises from the nonaxial feature of the prenozzle volume and the subsonic part of the nozzle, or because of nonaxiality of elements of the supersonic part. In the first case the nozzle includes an asymmetric subsonic region in which reverse-circulatory flow is observed, and in the second case it includes a region of sudden expansion of the supersonic flow from the asymmetric stagnation zone.Translated from Izvestiya Akademii NaukSSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 126–133, November–December, 1978.The authors thank A. N. Kraiko for useful comments and M. Ya. Ivanov for his interest in this work.  相似文献   

20.
A scramjet combustor with double cavitybased flameholders was experimentally studied in a directconnected test bed with the inflow conditions of M = 2.64,Pt = 1.84 MPa,Tt = 1 300 K.Successful ignition and selfsustained combustion with room temperature kerosene was achieved using pilot hydrogen,and kerosene was vertically injected into the combustor through 4×φ 0.5 mm holes mounted on the wall.For different equivalence ratios and different injection schemes with both tandem cavities and parallel cavities,flow fields were obtained and compared using a high speed camera and a Schlieren system.Results revealed that the combustor inside the flow field was greatly influenced by the cavity installation scheme,cavities in tandem easily to form a single side flame distribution,and cavities in parallel are more likely to form a joint flame,forming a choked combustion mode.The supersonic combustion flame was a kind of diffusion flame and there were two kinds of combustion modes.In the unchoked combustion mode,both subsonic and supersonic combustion regions existed.While in the choked mode,the combustion region was fully subsonic with strong shock propagating upstream.Results also showed that there was a balance point between the boundary separation and shock enhanced combustion,depending on the intensity of heat release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号