首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Based on the basic theory of C28 cluster molecule proven by H. W. Kroto and the research findings of C28's derivative such as Ti@C28* and Mg@C28, proven by T. Guo, B. I. Dunlap, O. D. Haberlen, and others, we examine the two series fullerene derivatives, C28H4 and C28X4 cluster molecules, which are formed by the skeleton of C28 cluster molecule. In this work, we not only prove that C28 cluster molecule belongs to the Td symmetry structure and its ground state is 5A2 open-shell with four unpaired electrons, but also find that C28 can easily react with single valence electron atoms, like hydrogen atom and halogen atoms, to be formed to stable fullerene derivatives, C28H4 and C28X4 cluster molecules (X=F, Cl, Br, I). The PM3 semiempirical molecular orbital method from G94W and Hyperchem program packages were applied very well in these fullerene derivatives. According to the results presented herein, we obtain the structures of geometrical optimization, ionization potential energy gap, heat of formation, atomization energy, and vibration frequency data of the C28H4 and C28X4 cluster molecules. The above calculation data confirm that these unknown fullerene derivatives are stable molecules; the stable behavior resembles the 1,3,5,7-tetrahaloadamantane molecules. It is quite possible that they can be synthesized experimentally in the near future. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 67: 187–197, 1998  相似文献   

2.
Structures, energies, and vibrational frequencies have been calculated for two C50H40 isomers with three dodecahedrane cages sharing two pentagons at the B3LYP/6‐31G* level of theory. Thus, two C50H40 isomers have the form of coplanar tri‐dodecahedrane‐cage molecules. The symmetry of one isomer is D5d and that of another is C2V. Heats of formation and vertical ionization energies for two C50H40 isomers have been estimated in this study. Heats of formation as well as vibrational analysis indicate that two C50H40 isomers enjoy sufficient stability to allow for its experimental preparation. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

3.
Polyynes were first synthesized before the year 1900, and isolated and characterized after 2000. Cyclic polyynes are of particular interest since possess a high order of symmetry. Furthermore, some studies reported special mechanical properties of the condensed polyyne bulks. The optimal size of polyynes to form rings has been previously investigated and was found to be 24 with a stable cluster of crossing four C24 cyclic polyynes. We investigated in this study the conformation of clusters of polyynes (nC24) by the pattern previously identified to stabilize the cluster. Clusters of 4C24, 10C24, 22C24, 46C24, and 94C24 were designed and subjected to energy minimization. The main finding is the preservation of the symmetry for the nC24 cluster with the increase of its size. The study revealed that 4C24, 10C24, and 22C24 preserve a high symmetry and the calculations suggest an excellent increasing of the cluster stability with the increase of the number of polyyne rings. A 22C24 derived cluster namely 28C24 was found as the one likely to limit the growth of the polyyne clusters.  相似文献   

4.
The B3LYP/3‐21G* ab initio molecular orbital method from the Gaussian 94 computer program package was applied to study tricyclo[3,3,1,13,7]decane and tricyclo[3,3,1,13,7]decsilane molecules and their halogen derivatives (1,3,5,7‐tetrahalotricyclo[3,3,1,13,7]decane and 1,3,5,7‐tetrahalotricyclo[3,3,1,13,7]decsilane, C10H12X4, and Si10H12X4). The optimized structures of these compounds were obtained. Ionization potentials, HOMO and LUMO energies, energy gaps, heats of formation, atomization energies, and vibration frequencies were calculated. These calculations indicate that these molecules are stable and have Td symmetry. Tricyclo[3,3,1,13,7]decsilane and its halogen derivatives (Si10H12X4) are found to have higher conductivity than that of tricyclo[3,3,1,13,7]decane and its halogen derivatives (C10H12X4). 1,3,5,7‐Tetraflourotricyclo[3,3,1,13,7]decane (C10H12F4) and 1,3,5,7‐tetraflourotricyclo[3,3,1,13,7]decsilane (Si10H12F4) were found to be the easiest compounds to form and the most difficult to dissociate of all 1,3,5,7‐tetrahalotricyclo[3,3,1,13,7]decane and 1,3,5,7‐tetrahalotricyclo[3,3,1,13,7]decsilane compounds, respectively. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 72: 189–198, 1999  相似文献   

5.
The aromaticity of all possible heterofullerenes C26N2 and C28 based on Td symmetry has been studied by means of the topological resonance energy and percentage topological resonance energy methods. The relationship between the aromaticity of the C26N2 isomers and the sites where nitrogen atoms dope at the C28 cage has been discussed. The calculation results show that the most stable isomer of C26N2 derivatives is formed by nitrogen atoms doping at the two tetrahedral vertices. C26N2 isomers are more stable than C28, but the C26N22? isomers are less stable than C28 4?4. The effect of nitrogen substitution on C28 stability was investigated by the topological charge stabilization rule.  相似文献   

6.
Energy differences, ΔXS‐t (X = E, H and G) (ΔXS‐t = X(singlet)‐X(triplet)) between singlet (s) and triplet (t) states are calculated at B3LYP/6‐311++G (3df,2p). The DFT calculations show that the triplet state of C4H4C is a ground state with planar conformer respect to its corresponding nonplanar singlet state. Both singlet and triplet states of C4H4M (M = Si, Ge, Sn and Pb) have a planar conformer with the singlet ground state. Four isodesmic reactions are presented for determining the stability energies, SE. NICS calculations are carried out for C4H4M to determine the aromatic character.  相似文献   

7.
ABSTRACT: Stability and electronic property calculations are performed systematically based on density functional theory at the B3LYP/6‐31G(d) level for Td C28 fullerene and exohedral fluorine and trifluoromethyl derivatives C28F4–n(CF3)n (n = 0,1,2,3,4). All the exohedral derivatives that are on the potential energy surfaces are kinetically stable with large HOMO‐LUMO gaps. Further investigations show that binding energies of C28F4–n(CF3)n (n = 0,1,2,3,4) molecules are positive, suggesting they are thermodynamically stable. An analysis of the π‐orbital axis vector indicates the high strain in Td C28 cage could be greatly released by fluorine and trifluoromethyl decorations. Mulliken charge analysis reveals that adding different electron groups to the Td C28 cage can cause remarkably different charge populations. In addition, from the ionization potential and electron affinity investigations, the C28F4–n(CF3)n (n = 0,1,2,3,4) molecules manifest weak redox properties. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

8.
A new cluster fullerene, Sc2O@Td(19151)‐C76, has been isolated and characterized by mass spectrometry, UV/Vis/NIR absorption, 45Sc NMR spectroscopy, cyclic voltammetry, and single‐crystal X‐ray diffraction. The crystallographic analysis unambiguously assigned the cage structure as Td(19151)‐C76, which is the first tetrahedral fullerene cage characterized by single‐crystal X‐ray diffraction. This study also demonstrated that the Sc2O cluster has a much smaller Sc?O?Sc angle than that of Sc2O@Cs(6)‐C82 and the Sc2O unit is fully ordered inside the Td(19151)‐C76 cage. Computational studies further revealed that the cluster motion of the Sc2O is more restrained in the Td(19151)‐C76 cage than that in the Cs(6)‐C82 cage. These results suggest that cage size affects not only the shapes but also the cluster motion inside fullerene cages.  相似文献   

9.
Simulations of the geometric and electronic structure of C44, C45, Si45, C40Si5, and C44Si clusters were performed by the MNDO method. The geometries of the filled clusters, calculated by the MM2 method, were used as initial approximations. It was found that the filled clusters C45 and C44Si are transformed into endohedral clusters X@C44 (X-C or Si, respectively) after energy optimization. The highest occupied energy level of the HOMO of the filled tetrahedral cluster Si45 ofT symmetry is triply degenerate and is only occupied by four electrons. The structure of Si45 2− dianion ofT symmetry was calculated. Two filled structures for the C40Si5 cluster were found. The coordination numbers of the central Si atom in these structures are 4 and 3, respectively. Translated fromIzvestiya Akademii Nauk, Seriya Khimicheskaya, No. 1, pp. 54–56, January, 1997.  相似文献   

10.
C40 is a fullerene with a conformation that has been proposed as Td, D2d, D4h and D5d symmetry groups. The correct structure has not been determined because it has not been possible to isolate the molecule, but there have been several studies of minor fullerenes that include it. In this work we present a theoretical study at the gaussian 94 HF/3-21G level that gives answers about the principal differences between the mentioned structures and the possible thermodynamic stability of each one. Furthermore, we include a similar study on the new D2h structure that we propose.  相似文献   

11.
The revived interest in halogen bonding as a tool in pharmaceutical cocrystals and drug design has indicated that cyano–halogen interactions could play an important role. The crystal structures of four closely related δ‐keto esters, which differ only in the substitution at a single C atom (by H, OMe, Cl and Br), are compared, namely ethyl 2‐cyano‐5‐oxo‐5‐phenyl‐3‐(piperidin‐1‐yl)pent‐2‐enoate, C19H22N2O3, (1), ethyl 2‐cyano‐5‐(4‐methoxyphenyl)‐5‐oxo‐3‐(piperidin‐1‐yl)pent‐2‐enoate, C20H24N2O4, (2), ethyl 5‐(4‐chlorophenyl)‐2‐cyano‐5‐oxo‐3‐(piperidin‐1‐yl)pent‐2‐enoate, C19H21ClN2O3, (3), and the previously published ethyl 5‐(4‐bromophenyl)‐2‐cyano‐5‐oxo‐3‐(piperidin‐1‐yl)pent‐2‐enoate, C19H21BrN2O3, (4) [Maurya, Vasudev & Gupta (2013). RSC Adv. 3 , 12955–12962]. The molecular conformations are very similar, while there are differences in the molecular assemblies. Intermolecular C—H...O hydrogen bonds are found to be the primary interactions in the crystal packing and are present in all four structures. The halogenated derivatives have additional aromatic–aromatic interactions and cyano–halogen interactions, further stabilizing the molecular packing. A database analysis of cyano–halogen interactions using the Cambridge Structural Database [CSD; Groom & Allen (2014). Angew. Chem. Int. Ed. 53 , 662–671] revealed that about 13% of the organic molecular crystals containing both cyano and halogen groups have cyano–halogen interactions in their packing. Three geometric parameters for the C—X...N[triple‐bond]C interaction (X = F, Cl, Br or I), viz. the N...X distance and the C—X...N and C—N...X angles, were analysed. The results indicate that all the short cyano–halogen contacts in the CSD can be classified as halogen bonds, which are directional noncovalent interactions.  相似文献   

12.
In the crystal structures of the two imidazole derivatives 5‐chloro‐1,2‐dimethyl‐4‐nitro‐1H‐imidazole, C5H6ClN3O2, (I), and 2‐chloro‐1‐methyl‐4‐nitro‐1H‐imidazole, C4H4ClN3O2, (II), C—Cl...O halogen bonds are the principal specific interactions responsible for the crystal packing. Two different halogen‐bond modes are observed: in (I), there is one very short and directional C—Cl...O contact [Cl...O = 2.899 (1) Å], while in (II), the C—Cl group approaches two different O atoms from two different molecules, and the contacts are longer [3.285 (2) and 3.498 (2) Å] and less directional. In (I), relatively short C—H...O hydrogen bonds provide the secondary interactions for building the crystal structure; in (II), the C—H...O contacts are longer but there is a relatively short π–π contact between molecules related by a centre of symmetry. The molecule of (I) is almost planar, the plane of the nitro group making a dihedral angle of 6.97 (7)° with the mean plane of the imidazole ring. The molecule of (II) has crystallographically imposed mirror symmetry and the nitro group lies in the mirror plane.  相似文献   

13.
Using the symmetrized boson representation technique, concise algebraic expressions of the irreducible bases symmetry adapted to the group chain IhC5 for the fullerene molecules C20H20, C80, and C240 are derived for the most general cases and those for any specific case can be derived from them easily without a projection procedure. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 73: 283–297, 1999  相似文献   

14.
The structural stability and energetics of carbon, silicon, and germanium microclusters containing 3?7 atoms have been investigated by using a recently developed empirical many-body potential energy function (PEF), which comprises two- and three-body atomic interactions. The PEF satisfies both bulk cohesive energy per atom and bulk stability exactly. It has been found that the most stable C3?4 microclusters are linear withD h symmetry but C5?7 microclusters are planar withD nh symmetry. Silicon and germanium microclusters show similar structural stability. TheX n (X=Si, Ge;n=3?7) microclusters are found to be most stable in the following forms:X 3 is triangular withD 3h symmetry,X 4 is tetragonal withT d symmetry,X 5 is square pyramidal withD 4h symmetry,X 6 is bipyramidal square withO h symmetry, and finallyX 7 is square pyramidal having two atoms underneath withD 2h symmetry.  相似文献   

15.
We report the gravimetric hydrogen uptake capacity of C2H4Sc complex and isoelectronic ions using Density Functional Theory. We predict that C2H4Sc+ can bind maximum seven hydrogen molecules in dihydrogen form giving gravimetric uptake capacity of 16.2 wt %, larger by about 2 and 4 wt % than the neutral and anion, respectively. We also found that the interaction of hydrogen molecules with C2H4Sc+ ion is characteristically different than that with neutral and anion. Vibrational spectroscopic study reveals that C2H4Sc and isoelectronic ions are quantum mechanically stable with their characteristic change in respective identified mode. The large gravimetric H2 uptake capacity of C2H4Sc+ is well above the target specified by Department of Energy (DOE) by 2015. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

16.
Based on our study of the application of fuzzy-subset theory to the characterization of imperfect symmetry in some stable molecular systems and simple dynamic molecular systems, we analyze the internal rotation process of allene-1,3- dihalides. Allene-1,3-dihalides (CHX=C=CHY, where X and Y may be the same or different halogen atoms) are optically chiral nonplanar molecules. The two end-groups may internally rotate about the near straight linear C=C=C axis, and the molecule may change its chirality. The internal rotation process may pass through two different planar transition state (TS): cis-TS and trans-TS, which belong to C2v and C2h point groups (as X and Y to be same), respectively. The intrinsic reaction coordinate (IRC) corresponding to the two TS processes is denoted as cis-IRC and trans-IRC. However, for the whole IRC reaction process, only their subgroup C2 well-defined symmetry remains. Other symmetry transformations in C2v and C2h point groups can only be examined in terms of imperfect symmetry, although there appear certain reaction reversal joint point group G(RcC2v) and G(RtC2h) well-defined symmetry in the dynamics through the IRC processes. If X and Y are different, the stable molecule has no conventional nontrivial point group symmetry. The internal rotation processes may pass through two different planar TS’s (cis-and trans-TS). The TS will still be a planar molecule belonging to CS point group with the molecule plane as its symmetry plane. Other states in the IRC may belong to certain reaction reversal joint point groups, G(RM)C and G(RM)T. We have thus examined the approximate symmetry of MO’s related to C2 point group. Moreover, we have also analyzed the membership functions, representation components, and their relationships shown in the MO fuzzy main representation correlation diagrams.  相似文献   

17.
The tetrachlorocuprate(II) ethylenediammonium and tetrachlorocadmate(II) ethylenediammonium were synthesized. Chemical analysis, elemental analysis, and X‐ray crystallography were applied to characterize the compositions and crystal structures of the two complexes. The lattice potential energies and the radiuses of the anions of two complexes were calculated to be UPOT[(C2H10N2)CuCl4]=1810.19 kJ·mol?1, UPOT[(C2H10N2)CdCl4]=1784.39 kJ·mol?1, r[(CuCl4)2?]=0.308 nm, and r[(CdCl4)2?]=0.321 nm from the data of the crystal structure, respectively. Low‐temperature heat capacities of the two complexes were measured by a precision automatic adiabatic calorimeter with the small sample over the temperature range from 78 to 400 K, respectively. Two polynomial equations of heat capacities against the temperatures were fitted by least square method: Cp,m[(C2H10N2)CuCl4, s] =213.553+118.578X?5.816X2+4.392X3+0.276X4 and Cp,m[(C2H10N2)CdCl4, s] =190.927+98.501X?7.931X2+0.657X3+3.834X4, in which X= (T?239)/161. Based on the fitted polynomial equations, the smoothed heat capacities and thermodynamic functions of the two complexes relative to the standard reference temperature 298.15 K were calculated at intervals of 5 K.  相似文献   

18.
The title dodecanuclear Mn complex, namely dodeca‐μ2‐acetato‐κ24O:O′‐tetraaquatetra‐μ2‐nitrato‐κ8O:O′‐tetra‐μ4‐oxido‐octa‐μ3‐oxido‐tetramanganese(IV)octamanganese(III) nitromethane tetrasolvate, [Mn12(CH3COO)12(NO3)4O12(H2O)4]·4CH3NO2, was synthesized by the reaction of Mn2+ and Ce4+ sources in nitromethane with an excess of acetic acid. This compound is distinct from the previously known single‐molecule magnet [Mn12O12(O2CMe)16(H2O)4], synthesized by Lis [Acta Cryst. (1980), B 36 , 2042–2044]. It is the first Mn12‐type molecule containing nitrate ligands to be directly synthesized without the use of a preformed cluster. Additionally, this molecule is distinct from all other known Mn12 complexes due to intermolecular hydrogen bonds between the nitrate and water ligands, which give rise to a three‐dimensional network. The complex is compared to other known Mn12 molecules in terms of its structural parameters and symmetry.  相似文献   

19.
Although CrSi2 silicide is an attractive advanced functional material, the improvement of electronic and optical properties is still a challenge for its applications. Here, we apply the first-principles calculations to investigate the influence of transition metals (TMs) on the electronic and optical properties of C40 CrSi2 silicide. Five possible TMs, Ti, V, Pd, Ag, and Pt, are considered in detail. The calculated results show that the additive metals Ti, V, Pd, and Pt are thermodynamically stable in C40 CrSi2 because the calculated impurity formation energy of TM-doped C40 CrSi2 is lower than zero. In particular, the V dopant is more thermodynamically stable than that of the other TMs. The calculated electronic structure shows that the band gap of C40 CrSi2 is 0.391 eV, which is in good agreement with the other results. In particular, the additive TMs improve the electronic properties of C40 CrSi2 due to the role of the d-state of TMs. Naturally, the additive TMs result in band migration (Cr-3d state and Si-3p state) from the valence band to the conduction band. Interestingly, the additive TMs lead to a red shift for optical adsorption of C40 CrSi2 silicide.  相似文献   

20.
In this work, we studied the formation of the rutile phase of titanium dioxide (TiO2) on delaminated MXene (d‐Ti3C2Tx) flakes by the reaction of Ti3C2Tx with amino acids in water. Three types of amino acids with varied side‐chain polarity were used to delaminate Ti3C2Tx. d‐Ti3C2Tx flakes formed stable colloidal solutions due to the negative surface charges of chemisorbed amino acids on the d‐Ti3C2Tx. Rutile formed on d‐Ti3C2Tx at room temperature upon the intercalation of aromatic amino acids and subsequent sonication of the solution, while flakes intercalated with aliphatic amino acids did not oxidize. X‐Ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy revealed the nanosize rutile formation on the surface of Ti3C2Tx flakes. The XPS results indicated the surface functionalization of histidine on d‐Ti3C2Tx flakes. As‐synthesized histidine functionalized rutile TiO2@d‐Ti3C2Tx hybrid was used for adsorption of Cu2+ ions from aqueous solution with a maximum uptake of 95 mg g?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号