首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We extend previous work on standard two-parameter Jordan partitions by Barry (Commun Algebra 43:4231–4246, 2015) to three parameters. Let \(J_r\) denote an \(r \times r\) matrix with minimal polynomial \((t-1)^r\) over a field F of characteristic p. For positive integers \(n_1\), \(n_2\), and \(n_3\) satisfying \(n_1 \le n_2 \le n_3\), the Jordan canonical form of the \(n_1 n_2 n_3 \times n_1 n_2 n_3\) matrix \(J_{n_1} \otimes J_{n_2} \otimes J_{n_3}\) has the form \(J_{\lambda _1} \oplus J_{\lambda _2} \oplus \cdots \oplus J_{\lambda _m}\) where \(\lambda _1 \ge \lambda _2 \ge \cdots \ge \lambda _m>0\) and \(\sum _{i=1}^m \lambda _i=n_1 n_2 n_3\). The partition \(\lambda (n_1,n_2,n_3:p)=(\lambda _1, \lambda _2,\ldots , \lambda _m)\) of \(n_1 n_2 n_3\), which depends on \(n_1\), \(n_2\), \(n_3\), and p, will be called a Jordan partition. We will define what we mean by a standard Jordan partition and give necessary and sufficient conditions for its existence.  相似文献   

2.
Let \((M,g)\) be a two dimensional compact Riemannian manifold of genus \(g(M)>1\). Let \(f\) be a smooth function on \(M\) such that
$$\begin{aligned} f \ge 0, \quad f\not \equiv 0, \quad \min _M f = 0. \end{aligned}$$
Let \(p_1,\ldots ,p_n\) be any set of points at which \(f(p_i)=0\) and \(D^2f(p_i)\) is non-singular. We prove that for all sufficiently small \(\lambda >0\) there exists a family of “bubbling” conformal metrics \(g_\lambda =e^{u_\lambda }g\) such that their Gauss curvature is given by the sign-changing function \(K_{g_\lambda }=-f+\lambda ^2\). Moreover, the family \(u_\lambda \) satisfies
$$\begin{aligned} u_\lambda (p_j) = -4\log \lambda -2\log \left( \frac{1}{\sqrt{2}} \log \frac{1}{\lambda }\right) +O(1) \end{aligned}$$
and
$$\begin{aligned} \lambda ^2e^{u_\lambda }\rightharpoonup 8\pi \sum _{i=1}^{n}\delta _{p_i},\quad \text{ as } \lambda \rightarrow 0, \end{aligned}$$
where \(\delta _{p}\) designates Dirac mass at the point \(p\).
  相似文献   

3.
Let \(k\ge 1\) and \(n_1,\ldots ,n_k\ge 1\) be some integers. Let \(S(n_1,\ldots ,n_k)\) be a tree T such that T has a vertex v of degree k and \(T{\setminus } v\) is the disjoint union of the paths \(P_{n_1},\ldots ,P_{n_k}\), that is \(T{\setminus } v\cong P_{n_1}\cup \cdots \cup P_{n_k}\) so that every neighbor of v in T has degree one or two. The tree \(S(n_1,\ldots ,n_k)\) is called starlike tree, a tree with exactly one vertex of degree greater than two, if \(k\ge 3\). In this paper we obtain the eigenvalues of starlike trees. We find some bounds for the largest eigenvalue (for the spectral radius) of starlike trees. In particular we prove that if \(k\ge 4\) and \(n_1,\ldots ,n_k\ge 2\), then \(\frac{k-1}{\sqrt{k-2}}<\lambda _1(S(n_1,\ldots ,n_k))<\frac{k}{\sqrt{k-1}}\), where \(\lambda _1(T)\) is the largest eigenvalue of T. Finally we characterize all starlike trees that all of whose eigenvalues are in the interval \((-2,2)\).  相似文献   

4.
We derive a discrete version of the results of Davini et al. (Convergence of the solutions of the discounted Hamilton–Jacobi equation. Invent Math, 2016). If M is a compact metric space, \(c : M\times M \rightarrow \mathbb {R}\) a continuous cost function and \(\lambda \in (0,1)\), the unique solution to the discrete \(\lambda \)-discounted equation is the only function \(u_\lambda : M\rightarrow \mathbb {R}\) such that
$$\begin{aligned} \forall x\in M, \quad u_\lambda (x) = \min _{y\in M} \lambda u_\lambda (y) + c(y,x). \end{aligned}$$
We prove that there exists a unique constant \(\alpha \in \mathbb {R}\) such that the family of \(u_\lambda +\alpha /(1-\lambda )\) is bounded as \(\lambda \rightarrow 1\) and that for this \(\alpha \), the family uniformly converges to a function \(u_0 : M\rightarrow \mathbb {R}\) which then verifies
$$\begin{aligned} \forall x\in X, \quad u_0(x) = \min _{y\in X}u_0(y) + c(y,x)+\alpha . \end{aligned}$$
The proofs make use of Discrete Weak KAM theory. We also characterize \(u_0\) in terms of Peierls barrier and projected Mather measures.
  相似文献   

5.
Let \(n\ge 2\) and \(g_{\lambda }^{*}\) be the well-known high-dimensional Littlewood–Paley function which was defined and studied by E. M. Stein,
$$\begin{aligned} g_{\lambda }^{*}(f)(x) =\bigg (\iint _{\mathbb {R}^{n+1}_{+}} \Big (\frac{t}{t+|x-y|}\Big )^{n\lambda } |\nabla P_tf(y,t)|^2 \frac{\mathrm{d}y \mathrm{d}t}{t^{n-1}}\bigg )^{1/2}, \ \quad \lambda > 1, \end{aligned}$$
where \(P_tf(y,t)=p_t*f(y)\), \(p_t(y)=t^{-n}p(y/t)\), and \(p(x) = (1+|x|^2)^{-(n+1)/2}\), \(\nabla =(\frac{\partial }{\partial y_1},\ldots ,\frac{\partial }{\partial y_n},\frac{\partial }{\partial t})\). In this paper, we give a characterization of two-weight norm inequality for \(g_{\lambda }^{*}\)-function. We show that \(\big \Vert g_{\lambda }^{*}(f \sigma ) \big \Vert _{L^2(w)} \lesssim \big \Vert f \big \Vert _{L^2(\sigma )}\) if and only if the two-weight Muckenhoupt \(A_2\) condition holds, and a testing condition holds:
$$\begin{aligned} \sup _{Q : \text {cubes}~\mathrm{in} \ {\mathbb {R}^n}} \frac{1}{\sigma (Q)} \int _{{\mathbb {R}^n}} \iint _{\widehat{Q}} \Big (\frac{t}{t+|x-y|}\Big )^{n\lambda }|\nabla P_t(\mathbf {1}_Q \sigma )(y,t)|^2 \frac{w \mathrm{d}x \mathrm{d}t}{t^{n-1}} \mathrm{d}y < \infty , \end{aligned}$$
where \(\widehat{Q}\) is the Carleson box over Q and \((w, \sigma )\) is a pair of weights. We actually prove this characterization for \(g_{\lambda }^{*}\)-function associated with more general fractional Poisson kernel \(p^\alpha (x) = (1+|x|^2)^{-{(n+\alpha )}/{2}}\). Moreover, the corresponding results for intrinsic \(g_{\lambda }^*\)-function are also presented.
  相似文献   

6.
Let\(B_{2}^{n}\) denote the Euclidean ball in\({\mathbb R}^n\), and, given closed star-shaped body\(K \subset {\mathbb R}^{n}, M_{K}\) denote the average of the gauge of K on the Euclidean sphere. Let\(p \in (0,1)\) and let\(K \subset {\mathbb R}^{n}\) be a p-convex body. In [17] we proved that for every\(\lambda \in (0,1)\) there exists an orthogonal projection P of rank\((1 - \lambda)n\) such that
$\frac{f(\lambda)}{M_K} PB^{n}_{2} \subset PK,$
where\(f(\lambda)=c_p\lambda^{1+1/p}\) for some positive constant c p depending on p only. In this note we prove that\(f(\lambda)\) can be taken equal to\(C_p\lambda^{1/p-1/2}\). In terms of Kolmogorov numbers it means that for every\(k \leq n\)
$d_k (\hbox{Id}:\ell^{n}_{2} \to ({\mathbb R}^{n},\|\cdot\|_{K})) \leq C_p \frac{n^{1/p-1}}{k^{1/p-1/2}} \ell(\hbox{ID}: \ell^{n}_{2} \to ({\mathbb R}^{n}, \|\cdot\|_{K})),$
where\(\ell(\hbox{Id})={\bf E}\|\sum\limits^{n}_{i=1}g_i e_i\|_K\) for the independent standard Gaussian random variables\(\{g_i\}\) and the canonical basis\(\{e_i\}\) of\({\mathbb R}^n\). All results do not require the symmetry of K.
  相似文献   

7.
For any \(p\in (0,\,1]\), let \(H^{\Phi _p}(\mathbb {R}^n)\) be the Musielak–Orlicz Hardy space associated with the Musielak–Orlicz growth function \(\Phi _p\), defined by setting, for any \(x\in \mathbb {R}^n\) and \(t\in [0,\,\infty )\),
$$\begin{aligned}&\Phi _{p}(x,\,t)\\&\quad := {\left\{ \begin{array}{ll} \displaystyle \frac{t}{\log {(e+t)}+[t(1+|x|)^n]^{1-p}}&{} \quad \text {when}\ n(1/p-1)\notin \mathbb N \cup \{0\},\\ \displaystyle \frac{t}{\log (e+t)+[t(1+|x|)^n]^{1-p}[\log (e+|x|)]^p}&{} \quad \text {when}\ n(1/p-1)\in \mathbb N\cup \{0\}, \end{array}\right. } \end{aligned}$$
which is the sharp target space of the bilinear decomposition of the product of the Hardy space \(H^p(\mathbb {R}^n)\) and its dual. Moreover, \(H^{\Phi _1}(\mathbb {R}^n)\) is the prototype appearing in the real-variable theory of general Musielak–Orlicz Hardy spaces. In this article, the authors find a new structure of the space \(H^{\Phi _p}(\mathbb {R}^n)\) by showing that, for any \(p\in (0,\,1]\), \(H^{\Phi _p}(\mathbb {R}^n)=H^{\phi _0}(\mathbb {R}^n) +H_{W_p}^p({{{\mathbb {R}}}^n})\) and, for any \(p\in (0,\,1)\), \(H^{\Phi _p}(\mathbb {R}^n)=H^{1}(\mathbb {R}^n) +H_{W_p}^p({{{\mathbb {R}}}^n})\), where \(H^1(\mathbb {R}^n)\) denotes the classical real Hardy space, \(H^{\phi _0}({{{\mathbb {R}}}^n})\) the Orlicz–Hardy space associated with the Orlicz function \(\phi _0(t):=t/\log (e+t)\) for any \(t\in [0,\infty )\), and \(H_{W_p}^p(\mathbb {R}^n)\) the weighted Hardy space associated with certain weight function \(W_p(x)\) that is comparable to \(\Phi _p(x,1)\) for any \(x\in \mathbb {R}^n\). As an application, the authors further establish an interpolation theorem of quasilinear operators based on this new structure.
  相似文献   

8.
We study the discrete spectrum of the Robin Laplacian \(Q^{\Omega }_\alpha \) in \(L^2(\Omega )\), \(u\mapsto -\Delta u, \quad D_n u=\alpha u \text { on }\partial \Omega \), where \(D_n\) is the outer unit normal derivative and \(\Omega \subset {\mathbb {R}}^{3}\) is a conical domain with a regular cross-section \(\Theta \subset {\mathbb {S}}^2\), n is the outer unit normal, and \(\alpha >0\) is a fixed constant. It is known from previous papers that the bottom of the essential spectrum of \(Q^{\Omega }_\alpha \) is \(-\alpha ^2\) and that the finiteness of the discrete spectrum depends on the geometry of the cross-section. We show that the accumulation of the discrete spectrum of \(Q^\Omega _\alpha \) is determined by the discrete spectrum of an effective Hamiltonian defined on the boundary and far from the origin. By studying this model operator, we prove that the number of eigenvalues of \(Q^{\Omega }_\alpha \) in \((-\infty ,-\alpha ^2-\lambda )\), with \(\lambda >0\), behaves for \(\lambda \rightarrow 0\) as
$$\begin{aligned} \dfrac{\alpha ^2}{8\pi \lambda } \int _{\partial \Theta } \kappa _+(s)^2\mathrm {d}s +o\left( \frac{1}{\lambda }\right) , \end{aligned}$$
where \(\kappa _+\) is the positive part of the geodesic curvature of the cross-section boundary.
  相似文献   

9.
The notion of broken k-diamond partitions was introduced by Andrews and Paule in 2007. For a fixed positive integer k, let \(\Delta _k(n)\) denote the number of broken k-diamond partitions of n. Recently, Paule and Radu conjectured two relations on \(\Delta _5(n)\) which were proved by Xiong and Jameson, respectively. In this paper, employing these relations, we prove that, for any prime p with \(p\equiv 1\ (\mathrm{mod}\ 4)\), there exists an integer \(\lambda (p)\in \{2,\ 3,\ 5,\ 6,\ 11\}\) such that, for \(n, \alpha \ge 0\), if \(p\not \mid (2n+1)\), then
$$\begin{aligned} \Delta _5\left( 11p^{\lambda (p)(\alpha +1)-1} n+\frac{11p^{\lambda (p)(\alpha +1)-1}+1}{2}\right) \equiv 0\ (\mathrm{mod}\ 11). \end{aligned}$$
Moreover, some non-standard congruences modulo 11 for \(\Delta _5(n)\) are deduced. For example, we prove that, for \(\alpha \ge 0\), \(\Delta _5\left( \frac{11\times 5^{5\alpha }+1}{2}\right) \equiv 7\ (\mathrm{mod}\ 11)\).
  相似文献   

10.
In this paper, we study the existence of nontrivial solution to a quasi-linear problem where \( (-\Delta )_{p}^{s} u(x)=2\lim \nolimits _{\epsilon \rightarrow 0}\int _{\mathbb {R}^N \backslash B_{\varepsilon }(X)} \frac{|u(x)-u(y)|^{p-2} (u(x)-u(y))}{| x-y | ^{N+sp}}dy, \) \( x\in \mathbb {R}^N\) is a nonlocal and nonlinear operator and \( p\in (1,\infty )\), \( s \in (0,1) \), \( \lambda \in \mathbb {R} \), \( \Omega \subset \mathbb {R}^N (N\ge 2)\) is a bounded domain which smooth boundary \(\partial \Omega \). Using the variational methods based on the critical points theory, together with truncation and comparison techniques, we show that there exists a critical value \(\lambda _{*}>0\) of the parameter, such that if \(\lambda >\lambda _{*}\), the problem \((P)_{\lambda }\) has at least two positive solutions, if \(\lambda =\lambda _{*}\), the problem \((P)_{\lambda }\) has at least one positive solution and it has no positive solution if \(\lambda \in (0,\lambda _{*})\). Finally, we show that for all \(\lambda \ge \lambda _{*}\), the problem \((P)_{\lambda }\) has a smallest positive solution.
  相似文献   

11.
We consider the following fractional \( p \& q\) Laplacian problem with critical Sobolev–Hardy exponents
$$\begin{aligned} \left\{ \begin{array}{ll} (-\Delta )^{s}_{p} u + (-\Delta )^{s}_{q} u = \frac{|u|^{p^{*}_{s}(\alpha )-2}u}{|x|^{\alpha }}+ \lambda f(x, u) &{} \text{ in } \Omega \\ u=0 &{} \text{ in } \mathbb {R}^{N}{\setminus } \Omega , \end{array} \right. \end{aligned}$$
where \(0<s<1\), \(1\le q<p<\frac{N}{s}\), \((-\Delta )^{s}_{r}\), with \(r\in \{p,q\}\), is the fractional r-Laplacian operator, \(\lambda \) is a positive parameter, \(\Omega \subset \mathbb {R}^{N}\) is an open bounded domain with smooth boundary, \(0\le \alpha <sp\), and \(p^{*}_{s}(\alpha )=\frac{p(N-\alpha )}{N-sp}\) is the so-called Hardy–Sobolev critical exponent. Using concentration-compactness principle and the mountain pass lemma due to Kajikiya [23], we show the existence of infinitely many solutions which tend to be zero provided that \(\lambda \) belongs to a suitable range.
  相似文献   

12.
The goal of this paper is the study of a transformation concerning the general K-fold finite sums of the form
$$\begin{aligned} \sum _{N\ge n_1\ge \cdots \ge n_K\ge 1}\frac{1}{b_{n_K}}\cdot \prod _{j=1}^{K-1}\frac{1}{a_{n_j}}, \end{aligned}$$
where \((K,N)\in \mathbb {N}^2\) and \(\{a_n\}_{n=1}^{\infty }\), \(\{b_n\}_{n=1}^{\infty }\) are appropriate real sequences. In the application part of our paper we apply the developed transformation to two special parametric multiple zeta-type series that generalize the well-know formula \(\zeta ^\star (\{2\}_K,1)=2\zeta (2K+1)\), \(K\in \mathbb {N}\). As a corollary of our parametric results, we also prove several sum formulas involving multiple zeta-star values.
  相似文献   

13.
Let \(C_1(H)\) denote the space of all trace class operators on an arbitrary complex Hilbert space H. We prove that \(C_1(H)\) satisfies the \(\lambda \)-property, and we determine the form of the \(\lambda \)-function of Aron and Lohman on the closed unit ball of \(C_1(H)\) by showing that
$$\begin{aligned} \lambda (a) = \frac{1 - \Vert a\Vert _1 + 2 \Vert a\Vert _{\infty }}{2}, \end{aligned}$$
for every a in \({C_1(H)}\) with \(\Vert a\Vert _1 \le 1\). This is a non-commutative extension of the formula established by Aron and Lohman for \(\ell _1\).
  相似文献   

14.
We consider the stationary Keller–Segel equation
$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta v+v=\lambda e^v, \quad v>0 \quad &{} \text {in }\Omega ,\\ \partial _\nu v=0 &{}\text {on } \partial \Omega , \end{array}\right. } \end{aligned}$$
where \(\Omega \) is a ball. In the regime \(\lambda \rightarrow 0\), we study the radial bifurcations and we construct radial solutions by a gluing variational method. For any given \(n\in \mathbb {N}_0\), we build a solution having multiple layers at \(r_1,\ldots ,r_n\) by which we mean that the solutions concentrate on the spheres of radii \(r_i\) as \(\lambda \rightarrow 0\) (for all \(i=1,\ldots ,n\)). A remarkable fact is that, in opposition to previous known results, the layers of the solutions do not accumulate to the boundary of \(\Omega \) as \(\lambda \rightarrow 0\). Instead they satisfy an optimal partition problem in the limit.
  相似文献   

15.
Let p be a prime, \(\varepsilon >0\) and \(0<L+1<L+N < p\). We prove that if \(p^{1/2+\varepsilon }< N <p^{1-\varepsilon }\), then
$$\begin{aligned} \#\{n!\,\,({\mathrm{mod}} \,p);\,\, L+1\le n\le L+N\} > c (N\log N)^{1/2},\,\, c=c(\varepsilon )>0. \end{aligned}$$
We use this bound to show that any \(\lambda \not \equiv 0\ ({\mathrm{mod}}\, p)\) can be represented in the form \(\lambda \equiv n_1!\cdots n_7!\ ({\mathrm{mod}}\, p)\), where \(n_i=o(p^{11/12})\). This refines the previously known range for \(n_i\).
  相似文献   

16.
We consider the Laplacian with attractive Robin boundary conditions,
$$\begin{aligned} Q^\Omega _\alpha u=-\Delta u, \quad \dfrac{\partial u}{\partial n}=\alpha u \text { on } \partial \Omega , \end{aligned}$$
in a class of bounded smooth domains \(\Omega \in \mathbb {R}^\nu \); here \(n\) is the outward unit normal and \(\alpha >0\) is a constant. We show that for each \(j\in \mathbb {N}\) and \(\alpha \rightarrow +\infty \), the \(j\)th eigenvalue \(E_j(Q^\Omega _\alpha )\) has the asymptotics
$$\begin{aligned} E_j(Q^\Omega _\alpha )=-\alpha ^2 -(\nu -1)H_\mathrm {max}(\Omega )\,\alpha +{\mathcal O}(\alpha ^{2/3}), \end{aligned}$$
where \(H_\mathrm {max}(\Omega )\) is the maximum mean curvature at \(\partial \Omega \). The discussion of the reverse Faber-Krahn inequality gives rise to a new geometric problem concerning the minimization of \(H_\mathrm {max}\). In particular, we show that the ball is the strict minimizer of \(H_\mathrm {max}\) among the smooth star-shaped domains of a given volume, which leads to the following result: if \(B\) is a ball and \(\Omega \) is any other star-shaped smooth domain of the same volume, then for any fixed \(j\in \mathbb {N}\) we have \(E_j(Q^B_\alpha )>E_j(Q^\Omega _\alpha )\) for large \(\alpha \). An open question concerning a larger class of domains is formulated.
  相似文献   

17.
18.
An idempotent operator E in a Hilbert space \({\mathcal {H}}\) \((E^2=1)\) is written as a \(2\times 2\) matrix in terms of the orthogonal decomposition
$$\begin{aligned} {\mathcal {H}}=R(E)\oplus R(E)^\perp \end{aligned}$$
(R(E) is the range of E) as
$$\begin{aligned} E=\left( \begin{array}{l@{\quad }l} 1_{R(E)} &{} E_{1,2} \\ 0 &{} 0 \end{array} \right) . \end{aligned}$$
We study the sets of idempotents that one obtains when \(E_{1,2}:R(E)^\perp \rightarrow R(E)\) is a special type of operator: compact, Fredholm and injective with dense range, among others.
  相似文献   

19.
20.
For any smooth bounded domain \(\Omega \subset {\mathbb {R}}^2\), we consider positive solutions to
$$\begin{aligned} \left\{ \begin{array}{lr}-\Delta u= u^p &{} \text{ in } \Omega \\ u=0 &{} \text{ on } \partial \Omega \end{array}\right. \end{aligned}$$
which satisfy the uniform energy bound
$$\begin{aligned}p\Vert \nabla u\Vert _{\infty }\le C\end{aligned}$$
for \(p>1\). We prove convergence to \(\sqrt{e}\) as \(p\rightarrow +\infty \) of the \(L^{\infty }\)-norm of any solution. We further deduce quantization of the energy to multiples of \(8\pi e\), thus completing the analysis performed in De Marchis et al. (J Fixed Point Theory Appl 19:889–916, 2017).
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号