首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 357 毫秒
1.
张庆合  张凌怡  张维冰  李彤  张玉奎 《分析化学》2004,32(10):1283-1286
以十二烷基键合氧化锆(C12-ZrO2)作为固定相,制备了填充毛细管电色谱(CEC)柱,较为系统地研究了流动相条件对电渗流的影响、填充CEC柱的稳定性、碱性与中性化合物的保留与流动相pH值和有机溶剂含量的关系。C12-ZrO2固定相填充CEC柱在pH3~11.7范围内具有极好的稳定性;利用磷酸盐与氧化锆表面之间较强的相互作用,能够有效解决传统硅胶键合烷基固定相在有机溶剂含量低的流动相条件下不稳定的问题;同时吸附磷酸盐的固定相表面使得在更宽的流动相pH值范围内CEC柱有足够的电渗流,进一步拓宽CEC的应用领域。  相似文献   

2.
刘小兰  高薇  梁超  乔俊琴  王康  练鸿振 《色谱》2021,39(11):1230-1238
反相液相色谱(RPLC)是测定正辛醇/水分配系数(log P)的有效方法,但由于缺少同类型模型化合物,RPLC在测定强离解化合物的log P时遇到挑战.该文在硅胶基质C18色谱柱上,采用离子抑制反相液相色谱(IS-RPLC)和离子对反相液相色谱(IP-RPLC)分别对中性化合物、酚酸、羧酸、磺酸及部分两性化合物的保留行...  相似文献   

3.
陈霞  韦誉  陆俊宇  张爱珠  叶芳贵  赵书林 《分析化学》2012,40(10):1584-1588
基于十八烷基硫醇与乙烯基功能化毛细管(Vinyl capillary)的硫醇-烯点击化学反应,制备了一种新型的C18毛细管电色谱开管柱(C18capillary).采用乙烯基三甲氧基硅烷对毛细管内壁进行乙烯基功能化,然后通过硫醇-烯点击化学反应共价键合十八烷基硫醇于Vinyl capillary内表面.采用环境扫描电镜对C18 capillary进行了形貌表征.考察了缓冲溶液pH值对C18 capillary、Vinyl capillary和裸毛细管柱(Bare capillary)电渗流的影响.结果表明;在相同实验条件下,C18capillary的电渗流最小.以3种多环芳烃为模型化合物,评价了C18capillary的电色谱柱性能;同时考察了模型化合物在C18capillary上的电色谱保留行为.实验表明,其保留机理是基于典型的反相作用.当C18 capillary用于碱性模型化合物分离时,碱性物质在C18 capillary上的峰形较好,无明显的峰拖尾现象,这可能是由于C18capillary表面含有极性的S基团能够屏蔽残留硅羟基对碱性化合物的吸附作用.  相似文献   

4.
研究了10种二取代苯甲腈类有机污染物的水解行为,用反相高效液相色谱测定了不同pH值和不同溫度下的水解速度常数。结果表明,含羟基的化合物在酸,碱和中性水介质中均不易水解;其它化合物仅在碱性介质中水解,其碱性催化水解速度常数与Hammett取代基常数以及酸常数之间呈近似线性关系。相关方程为:lgk_B=1.45σ-0.859和lgk_B=-1.34pK_(?)-4.83。  相似文献   

5.
研究了某些生物碱在十八烷基膦酸改性锆-镁复合氧化物固定相(C18PZM)上的色谱行为。通过考察流动相参数如甲醇含量、缓冲液pH值和离子强度对生物碱保留的影响,对这类化合物在该固定相上的保留机理进行了探讨。结果表明,在实验色谱条件下,生物碱在C18PZM上表现出反相和阳离子交换的混合保留模式机理。锆-镁基质上化学吸附的十八烷基膦酸和其对流动相中路易斯碱的吸附以及锆羟基本身均有可能是该固定相的离子交换作用位点的来源。高pH值流动相,溶质大部分以分子状态使用形式存在,因此其保留以疏水作用为主。在甲醇-pH 10.1 Tris缓冲液,生物碱的分离取得了满意的结果。与传统的烷基键合硅胶反相固定相相比,C18PZM表现出了更优越的化学稳定性,对于碱性化合物,尤其是具有高pKa值的碱性化合物的分离分析有着广泛的应用前景,有望发展为与硅胶键合固定相互补的一类反相HPLC的固定相。  相似文献   

6.
赵震震  瞿其曙  张欣欣  谷雪  王彦  阎超 《色谱》2009,27(4):431-435
制备了用于色谱的微米纯金颗粒并键合上十八烷基(C18)官能团;对其进行了扫描电镜、红外光谱、元素分析、氮气吸附分析等表征。测得衍生的金颗粒的粒径、孔径以及比表面积分别为3.5 μm、5.0 nm、49.0 m2/g;红外光谱表明C18官能团已键合在金颗粒表面上;衍生后的金颗粒的含碳量为0.56%。通过电填充法得到长度为36 cm(固定相填充长度为19 cm)、内径为100 μm的毛细管色谱柱。利用极端pH的流动相(80%甲醇,pH 1.0以及pH 12.0)冲洗该色谱柱140 h,比较冲洗前后分析物的保留因子,以考察色谱柱的耐酸耐碱性能。结果表明,冲洗前后分析物的保留因子没有明显的变化,说明该色谱柱有良好的耐酸耐碱性。在毛细管液相色谱模式下,用该柱分离尿嘧啶、苯、萘、2-甲基萘、苊以评价色谱柱的一般性能;在碱性条件下分离咖啡因、茶碱、洛贝林以测定色谱柱分离碱性物质的能力。其分离结果表明,该色谱柱的柱效超过了50000理论塔板/m,且色谱峰形较好。在毛细管加压电色谱模式下,施加+5 kV和~5 kV的电压均可以使苯甲酸和苯胺分离,但电场方向不同时,二者的出峰顺序不同。  相似文献   

7.
吕倩楠 《色谱》2017,35(9):927-933
亲水/反相混合模式色谱应用广泛,但pH使用范围有限,不利于碱性药物的分离。该工作利用巯基-烯基点击化学合成了单分散多孔的半胱氨酸改性乙烯基功能化聚甲基倍半硅氧烷(C-V-PMSQ)微球。元素分析表明半胱氨酸成功键合在微球表面。C-V-PMSQ微球为介孔结构,单分散性好且具有优良的化学稳定性。以几种常见的核苷和核酸碱基作为测试样品,考察其色谱保留行为,溶质的保留因子随流动相中水相含量的变化呈现典型的U型曲线,表明C-V-PMSQ固定相具有亲水/反相的双重保留特征。使用该固定相可以分离苯的同系物及一系列亲水性与疏水性化合物。另外在高碱性流动相条件下利用亲水和反相模式成功分离了中药苦参中的3种主要活性成分,表明它在分离碱性药物方面具有较大的优势。  相似文献   

8.
测定平衡常数多采用电导法、冻点法或反应速率法等。用离子选择电极测定平衡常数或离解常数多集中研究各种氟络合物。用硫电极测定平衡常数的工作仅见到测SnS_3~(2-)的平衡常数。我们在对硫电极研究的基础上,用pH玻璃电极测定溶液的pH值,用pS电极测定不同pH值溶液中的[S~(2-)]浓度,根据H_2S在溶液中的平衡理论及硫电极在溶液中的响应特性,找到一种推算H_2S离解常数的途径。  相似文献   

9.
朱岩  戚文彬 《分析化学》1993,21(2):202-205
本文探索了抑制电导离子色谱法测定pK_a<7的一元弱酸的离解常数,对以HCl为标准测定HF、HNO_2的离解常数和以HF为标准测定乳酸、乙酸和甲酸的离解常数及测定方法的主要误差来源进行了讨论。  相似文献   

10.
偶氮氯膦-mA(CPA mA)离解作用的研究   总被引:6,自引:0,他引:6  
本文用pH电位法和分光光度法研究了偶氮氯膦-mA的六级离解作用,测定了其逐级电离常数,计算了离解过程的热力学参数△G°、△H°、△S°,同时与对硝基偶氮氯膦的离解常数进行了比较,其结果与量子化学计算基本相符。  相似文献   

11.
Summary The chromatographic properties of an alkylphosphonate-modified magnesia-zirconia composite stationary phase have been investigated by reversed-phase high-performance liquid chromatography with basic compounds as probes. The influence of organic modifier composition and mobile phase pH was studied. The new stationary phase, similar to a silica-based reversed-phase stationary phase, has hydrophobic properties, but greater pH stability. Use of the phase results in more symmetric peaks for basic compounds. A possible mechanism of retention of basic solutes on the new stationary phase is discussed. The chromatographic behavior of the basic solutes depends mainly on hydrophobic interactions between the solutes and the hydrophobic moiety of the stationary phase. Br?nsted acidic and basic sites on the surface of the new stationary phase play an important role in the retention of ionized solutes by ion-exchange interaction. Promising separations of some basic compounds have been achieved by use of methanolic TRIS buffer, pH 10.0, as the mobile phase.  相似文献   

12.
A new type of ether-bonded packing for reversed-phase HPLC (RP-HPLC) was synthesized by reacting 1-octanol with beta-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, followed by coupling the product onto porous silica. The prepared packing was characterized by elemental analysis, solid-state 13C NMR, and Fourier transform infrared (FT-IR) spectroscopy. Chromatographic evaluations were performed by using a mixture of organic compounds as the analyte and methanol-water as binary mobile phase. The influence of the composition of organic modifier on the retention behavior of basic compounds was studied. The hydrolytic stability of the packing between pH 2.5-7.5 was also investigated. The results showed that the new stationary phase has excellent chromatographic properties and good hydrolytic stability.  相似文献   

13.
The retention behavior of a large group of analytes (35) with varied properties (pKa and logP) was studied on eight hydrophilic interaction LC columns with different surfaces, stationary phase chemistries, and types of particles. The acetonitrile content (5–95%), buffer concentration (0.5–200 mM), and pH of the mobile phase (3.8 and 6.8) were evaluated for their effects on the retention behavior. The type of stationary phase had a significant impact on the selectivity and retention time of the tested analytes. Completely different selectivity was observed on the aminopropyl stationary phase. In this study, the influence of the buffer concentration was similar for all tested columns, except for the aminopropyl stationary phase. Increasing the buffer concentration led to decreased retention times for the basic compounds and increased retention times for the acidic compounds, while the inverse behavior was observed on the aminopropyl stationary phase. The selectivity of the individual stationary phases was evaluated at pH 3.8 and 6.8. Much lower selectivity differences between the stationary phases were observed at pH 6.8 than pH 3.8. Bare silica stationary phases were used in the comparison of the particles (fused‐core and fully porous particles of 3 and 1.7 μm) and the columns provided by different manufacturers.  相似文献   

14.
Lü H  Wang J  Wang X  Wu X  Lin X  Xie Z 《Journal of separation science》2007,30(17):2993-2999
A monolithic stationary phase was prepared in a single step by in situ copolymerization of iso-butyl methacrylate (IBMA), ethylene dimethacrylate (EDMA), and N,N-dimethylallylamine (DMAA) in a binary porogenic solvent consisting of N,N-dimethylformamide (DMF) and 1,4-butanediol. As the frame structures of monoliths, the amino groups are linked to support the EOF necessary for driving the mobile phase through the monolithic capillary, while the hydrophobic groups are introduced to provide the nonpolar sites for the chromatographic retention. To evaluate the column performance, separations of typical kinds of neutral or charged homologs, such as alkylbenzenes, phenols (including isomeric compounds of hydroquinone, resorcin, and catechol), and anilines (including isomeric compounds of o-phenylenediamine and 1,4-phenylenediamine), were performed, respectively on the prepared column under the mode of pressurized pCEC. Effects of the buffer pH and the mobile phase composition on the linear velocity of mobile phase and the retention factors of these compounds were investigated. It was found that the retention mechanism of charged solutes could be attributed to a mixed mode of hydrophobic interaction and electrophoresis, while an RP chromatographic behavior on the monolithic stationary phases was exhibited for neutral solutes. Especially, basic compounds such as anilines were well separated on the monolithic columns in the "counterdirectional mode," which effectively eliminated the electrostatic adsorption of basic analytes on the charged surface of the stationary phases.  相似文献   

15.
Complex analyses of polar compounds, especially basic ones, require more selective stationary phases. The present paper describes a stationary phase prepared by thermal immobilization of poly(methyltetradecylsiloxane) onto chromatographic silica (PMTDS-SiO(2)). This stationary phase presents hydrophobic and ion-exchange interactions that confer both high retention and unique selectivities for basic solutes. The influence of ion-exchange interactions is confirmed by the increase in retention factors of basic solutes when the mobile-phase pH changes from acidic to neutral and by the decrease in retention factors when the mobile-phase pH changes from neutral to alkaline. The ion-exchange properties of the stationary phase are enriched in neutral mobile phase (pH 7-7.5) using soft Lewis bases such as tricine and tris as buffers but are suppressed in both acidic (pH 2.5-6) and highly alkaline mobile phases (pH≤10). Increasing both temperature and flow rate permits more rapid separations while maintaining the selectivity. The stability of the stationary phase is evaluated with acid, neutral and alkaline mobile phases.  相似文献   

16.
An RP-HPLC study for the pKa determination of a series of basic compounds related to caproctamine, a dibenzylaminediamide reversible inhibitor of acetylcholinesterase, is reported. The 2-substituted analogues, bearing substituents with different electronegativity, were analysed by RP-HPLC by using C18 C4 stationary phases with a mobile phase consisting of mixture of acetonitrile and triethylamine phosphate buffer (pH range comprised between 4 and 10). Typical sigmoidal curves were obtained, showing the dependence of the capacity factors upon pH. In general, the retention of the investigated basic analytes increased with increasing of the pH. The inflection point of the pH sigmoidal dependence was used for the dissociation constant determination at a fixed acetonitrile percentage. When plotting pKa vs. percent of acetonitrile in the mobile phase for two representative compounds, linear regression were obtained: the y intercept gave the aqueous pKa(w). The pKa estimation by HPLC method was found to be useful to underline the difference of benzylamine basicity produced by the ortho aromatic substituents. The variation of pKa values (6.15-7.80) within the series of compounds was correlated with the electronic properties of the ortho-substituents through the Hammett sigma parameter, whereas the ability of substituents to accept H-bond was found to play a role in determining the conformational behavior of the molecules.  相似文献   

17.
Three n-octadecylphosphonic acid-modified magnesia-zirconia reversed stationary phases (C18PZM) are prepared via the strong Lewis base interactions between organophosphonate and magnesia-zirconia composite. And two of them are end-capped by using trimethylchlorosilane as end-capping agent in different procedures. Stability studies at extreme high pH conditions (pH 9-12) show that both the non-endcapped and endcapped columns are quite stable at pH 12 mobile phase. The reversed-phase liquid chromatographic behavior of three C18PZM stationary phases are comparatively investigated in detail using a variety of basic compounds as probes. The retention of basic compounds on the three phases is studied over a wide range of pHs. And the possible retention mechanisms of basic compounds on the three stationary phases are discussed. The results show that the basic solutes retain by a hydrophobic and cation-exchange interaction mixed mechanism on three stationary phases when they are operated in eluents at pH values near to the pKa of the Brönsted conjugate acid form of the analyte, suggesting that inherent zirconol groups on ZM are not expected to interact with bases via cation-exchange interaction at lower pH. Nonetheless, the non-endcapped phase differs markedly from the edncapped ones in retention and selectivity of basic solutes using eluents at pH 4.1, implying a complex retention mechanism at this pH. The cation-exchange sites under such conditions are more likely due to the adsorbed Lewis base anionic buffer constituents (acetate) on accessible ZM surface sites than the chemisorbed phosphonate. Although the three phases exhibit very similar chromatographic behavior with eluents at pH 10.1, and show in general satisfactory separation of basic compounds and alkaloids studied, the performance for a specific analyte, however, differs largely from column to column.  相似文献   

18.
Two fluoroalcohols--1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol (HFTB)--were evaluated as volatile buffer acids in basic mobile phases for LC-ESI-MS determination of acidic and basic compounds. HFIP and HFTB as acidic buffer components offer interesting possibilities to adjust retention behavior of different analytes and expand the currently rather limited range of ESI-compatible buffer systems for basic mobile phases. Comparing with commonly used basic buffer components the fluoroalcohols did not suppress the ionization of the analytes, for several analytes ionization enhancement was observed. RP chromatographic retention mechanisms were evaluated and compared to traditional buffer system. All trends in retention of the acidic and basic analytes can be interpreted by the following model: the neutral fluoroalcohols are quite strongly retained by the stationary phase whereas their anions are less retained, thus their amount on the stationary phase is dependent on mobile phase pH; the anions of the fluoroalcohols form ion pairs in the mobile phase with the basic analytes; the fluoroalcohols on the stationary phase surface compete with acidic analytes thereby hindering their retention; the fluoroalcohols on the stationary phase bind basic analytes thereby favoring their retention.  相似文献   

19.
Li Y  Feng Y  Chen T  Zhang H 《Journal of chromatography. A》2011,1218(35):5987-5994
An imidazoline was prepared by solvent-free microwave-assisted organic synthesis and immobilized on porous silica particles by polymerization. The resulting material was composed of both hydrophobic alkyl ester chains and hydrophilic imidazoline rings, which gave it both hydrophilic interaction and reversed-phase characteristics. The titration curve suggests that the new material has buffering capacity and acquires increasing positive charge over the pH range 9-4, and is "zwitterionic" in the upper part of this pH range. Through investigating the effect of column temperature, the water content, pH and ion strength of mobile phase on the retention time of polar compounds in highly organic eluents, it was found that the new material could be used as a hydrophilic interaction liquid chromatography (HILIC) stationary phase which involved a complex retention process consisting of partitioning, surface adsorption and electrostatic interactions. In addition, the retention behavior of aromatic compounds in different mobile phase conditions was also studied, which showed the new material mainly exhibited a partitioning mechanism in the reversed-phase liquid chromatography (RPLC) mode. The separation of six water-soluble vitamins and five aromatic compounds were achieved by using the new material in the HILIC and RPLC modes, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号