共查询到17条相似文献,搜索用时 62 毫秒
1.
硼化含氮杂环衍生物的摩擦学性能研究 总被引:2,自引:0,他引:2
从分子设计的观点出发,设计并合成了硼化含氮杂环衍生物,考察了其作为润滑油添加剂的抗磨性能,并通过扫描电子显微镜和X射线光电子能谱仪分析探讨了其在基础油中的抗磨作用机理.结果表明:所合成的硼化杂环衍生物添加剂在摩擦表面生成了由非牺牲性B2O3沉积层、氧化物、酸性氧化产物和聚合物组成的润滑及防护薄膜,从而有效地起到抗磨作用. 相似文献
2.
六元含氮元环化合物的分子结构对其抗磨性能的影响 总被引:12,自引:3,他引:9
在四球摩擦磨损试验机和SRV微动磨损试验机上考察了5种六元杂环化合物(吡啶、吡嗪、嘧啶、哒嗪、三嗪)润滑油添加剂的抗磨性能,采用X射线光电子能谱分析了摩擦表面元素的化学状态.结果表明,这5种化合物都可以在不同程度上改善基础油的抗磨性能,其作用效果依次为嘧啶>哒嗪>均三嗪>吡嗪>吡啶.磨损表面N元素主要以未分解的六元N杂环化合物或分解的有机胺以及硝基或亚硝基化合物形式存在.在摩擦磨损过程中,含N杂环化合物不仅在金属表面发生了物理吸附和化学络合吸附,还在边界润滑条件下发生了开环反应.其抗磨减摩机理与杂环化合物的化学键长及共振能大小有关. 相似文献
3.
合成了一种新型不含硫、磷的氮杂环化合物润滑油添加剂,二[(喹唑啉-4-酮)-N-亚甲基]正十二胺(DQMD),考察了其热稳定性和抗腐蚀性能,通过四球试验机和万能摩擦磨损试验机评价了其在液体石蜡中的摩擦磨损性能,并采用光学显微镜、扫描电子显微镜(SEM)和X射线光电子能谱仪(XPS)观察分析了磨损表面形貌及典型元素的化学状态.结果表明:所合成的添加剂具有良好的热稳定性、抗腐蚀性能和极压抗磨减摩性能.这归因于含添加剂的液体石蜡在摩擦过程中发生摩擦化学反应并生成由氧化亚铁/氧化铁、有机氮化物和含氮金属配合物等组成的混合边界润滑膜. 相似文献
4.
5.
6.
7.
采用反向传播神经网络法(Back Propagation Neural Network,简称:BPNN)对31种含氮、硫的2-烷基黄原酸酯类润滑油添加剂的抗磨性能进行了摩擦学定量构效关系(Quantitative Structure Tribo-ability Relationship,简称:QSTR)的研究,得到了具有良好的稳定性和预测能力的BPNN-QSTR模型(R~2=0.998 4,R~2(LOO)=0.695 9,q~2=0.879 1).参考输入层的12种2D和3D结构描述符的敏感度,对影响抗磨性能的分子结构进行了相应的探讨.结果表明:分子中的N和S杂原子对其抗磨损性能有显著的影响;同时,分子长度、所含双键S原子和芳香环数量以及分子支化程度等都是影响抗磨性能的主要因素. 相似文献
8.
几种含氯硼酸酯添加剂的摩擦学性能研究 总被引:4,自引:3,他引:4
利用四球试验机和环-块试验机对自行合成的几种含氯硼酸酯作为润滑油添加剂的摩擦学性能与不含氯硼酸酯及氯代十六烷的进行了对比试验研究,利用X射线光电子能谱对摩擦表面的组成及B1s和Cl2p的电子结合能进行了分析。环-块试验结果表明,含氯硼酸酯与不含氯硼酸酯的摩擦磨损性能相差不大;四球试验结果表明,含氯硼酸酯的最大无卡咬负荷比不含氯硼酸酯的高,而且含氯硼酸酯的减摩抗磨效果比氯代十六烷的好,承载能力也比氯代十六烷的高。X射线光电子能谱分析表明,硼在摩擦表面是以降解的硼酸酯的形式存在,而氯在摩擦表面则是以铁的氯化物和含氯硼酸酯的两种形式存在。 相似文献
9.
为探索黑水虻幼虫体内的粗油脂作为生物润滑油添加剂的应用可行性,本文中以五龄黑水虻虫体的粗油脂为原料,通过纯化、水解反应和酯化反应合成了虫体油脂衍生物.采用核磁共振波谱、傅里叶红外光谱和热重分析仪对其结构和热稳定性进行表征,发现其热稳定性良好.采用UMT-TriboLab摩擦磨损试验机和四球摩擦试验机分别研究了虫体油脂衍生物作为润滑油添加剂在点-面和点-点接触模式下的摩擦学性能,并与商用合成酯的性能进行对比.结果表明,在基础油150N中添加质量分数为1%的虫体油脂衍生物时,油品表现出较优的减摩和抗磨效果.在点-面接触模式下,摩擦系数和磨损率相对于基础油分别降低25.0%和92.0%,且在200℃高温下仍能保持减摩效果.在点-点接触模式下,磨损率相对于基础油降低了84.5%.可见虫体油脂衍生物作为润滑油添加剂能够有效提高油品的摩擦学性能.采用接触角试验验证了虫体油脂衍生物作为润滑油添加剂在金属表面的吸附性能.结果表明,虫体油脂衍生物在润滑过程中能够优先吸附在摩擦副的金属表面,形成润滑保护膜,使油品的减摩和抗磨性能提升.通过显微红外光谱和拉曼光谱研究了虫体油脂衍生物的润滑作用机理,表明磨痕表... 相似文献
10.
纳米硼酸铜颗粒的制备及其用作润滑油添加剂的摩擦学性能 总被引:36,自引:6,他引:36
采用二氧化碳超临界干燥技术制备了粒径为10 ̄20nm的硼酸铜颗粒,并测定了其用作润滑油添加剂的摩擦学性能,结果表明,纳米硼酸铜使500SN基础油润滑下的摩擦系数略有增大,并使其抗磨及承载能力提高,其最佳添加量为0.70% ̄1.10%,纳米硼酸铜颗粒在摩擦表面发生了摩擦化学反应,生成了由B2O3及FeB等组成的表面保护膜,润滑油抗磨性能的提高是纳米硼酸铜粒在摩擦表面的沉积及其摩擦化学产物作用的结果。 相似文献
11.
依据摩擦学定量构效关系理论(QSTR),采用比较分子力场分析(CoMFA)和比较分子相似性指数分析(CoMSIA)这两种方法研究了含氮杂环类润滑油添加剂的抗磨损性能的摩擦学三维定量构效关系(3D-QSTR),并建立了相应的3D-QSTR模型.结果表明:仅利用静电场构建CoMFA或CoMSIA模型时,模型预测能力最好,r~2,q~2均大于0.5.根据CoMFA或CoMSIA模型等高线图分析得出:分子静电场对含氮杂环类润滑油添加剂的抗磨损性能影响最大,在特定区域的引入带负电荷或带正电荷的基团将有助于抗磨性能的提高. 相似文献
12.
噻吩含氮衍生物在菜籽油中的摩擦学行为 总被引:2,自引:2,他引:2
利用四球摩擦磨损试验机考察了所合成添加剂[S-(2H-噻吩-2-基)甲基]N、N-二烷基二硫代氨基甲酸酯和噻吩对菜籽油摩擦学性能的影响以及添加剂结构和性能的关系,用X射线光电子能谱仪和扫描电子显微镜观察分析了磨损表面的形貌和元素化学状态。结果表明:噻吩/菜籽油润滑剂对钢-钢摩擦副有增摩促磨作用,而噻吩氨基甲酸酯衍生物添加剂在适当浓度下可改善菜籽油的减摩抗磨性能和承载能力;含上述添加剂的菜籽油在摩擦过程中发生摩擦化学反应,生成由菜籽油甘油酯和添加剂摩擦化学反应产物组成的边界润滑膜,从而改善菜籽油的摩擦学性能。 相似文献
13.
无机硼酸盐润滑油抗磨添加剂的发展现状 总被引:20,自引:7,他引:20
本文结合作者自身多年从事的有关研究,对无机硼酸盐润滑油抗磨添加剂的发展现状作了综合介绍。文章在简要阐明了无机硼酸盐的分子结构和制备方法之后,着重就其抗磨性能和抗磨作用机理之研究的广度和深度进行了归纳与分析,比较全面地反映了人们对这类添加剂目前的研究和认识水平。文章最后还强调指出,无机硼酸盐与含S、P、Cl添加剂的配伍性及其分散体的稳定性和抗水性等都还有待深入研究。 相似文献
14.
本文利用MQ-12型四球试验机和SRV磨损试验机对某些含不同取代基的二苯醚型化合物的极压抗磨性能进行了试验研究。结果表明,取代基的种类、数目和位置对二苯醚型化合物的极压抗磨性能都有重要的影响,2-硝基4-三氟甲基2′,4′-二氯代二苯醚有比较好的四球磨损性能,而3-三氟甲基4′-硝基二苯醚有良好的SRV极压性能,硫代磷酰胺基取代的二苯醚具有很好的极压和抗磨作用。作者指出,将含S、P、O、N不同元素的基团适当组合在同一添加剂分子中,能够控制添加剂分子与金属表面的化学反应,不使任何一个键过于活泼,因而能够抑制极压添加剂的腐蚀作用。 相似文献
15.
润滑油添加剂—硼酸酯的摩擦磨损性能及其抗磨机理之研究 总被引:6,自引:3,他引:6
作者合成了6种烷基链长不同的直链有机硼酸酯,并且利用Titaken试验机考察了它们用作润滑油添加剂的摩擦磨损性能;利用气相色谱仪(GC)对摩擦后的硼酸酯及摩擦产生的气体进行了分析;利用X-光电子能潜仪(XPS)和电子探针(EPMA)对摩擦表面进行了分析。Timken试验表明,硼酸酯有优良的减摩抗磨性能及较高的失效负荷,而且它们的分子链越长,减摩抗磨性能越好,失效负荷越高;GC分析表明,硼酸脂在摩擦过程中发生了碳链的降解并产生了小分子的气体;XPS和EPMA分析表明,硼以降解的硼酸酯的形式吸附于摩擦表面,而且硼酸脂的分子链越短,吸附于摩擦表面上降解的硼酸酯的分子也越短,但没有B_2O_3和FeB产生。 相似文献
16.
有机硼酸酯润滑油减摩抗磨添加剂 总被引:13,自引:6,他引:13
本文介绍了有机硼酸酯润滑油减摩抗磨添加剂的发展概况,并从阐述有机硼酸酯添加剂的种类和分子结构入手,着重就其摩擦学性能与分子结构的关系,以及分子结构中硫和氯等元素对其摩擦磨损性能的影响这两方面的国内外研究工作进行了综合与评述,接着又对有机硼酸酯的抗磨作用机理与失效机理进行了探讨,同时还对这个领域今后工作的主攻方向提出了可供借鉴的设想。 相似文献
17.
醇和羧酸添加剂对菜籽油抗磨与极压性能的影响 总被引:2,自引:1,他引:2
在四球摩擦磨损试验机上考察了醇-菜籽油及羧酸-菜籽油对钢-钢摩擦副抗磨与极压性能的影响,并分析了其润滑机制。结果表明,醇不能改善菜籽油的抗磨性能及承载能力,羧酸能明显改善菜籽油的抗磨性能,但却降低其承载能力,这与菜籽油本身的特性及三者的极性强弱有关。钢球磨损表面XPS分析表明:2种润滑剂体系在摩擦过程中均形成了复杂的表面保护膜。2种润滑剂体系在钢球表面形成的保护膜的特性不同,这决定了它们个有不同的 相似文献