首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of titanyl sulfate in dilute sulfuric acid with 1 equiv of NaL(OEt) (L(OEt)(-) = [(eta(5)-C(5)H(5))Co{P(O)(OEt)(2)](3)](-)) in the presence of Na(3)PO(4) and Na(4)P(2)O(7) led to isolation of [(L(OEt)Ti)(3)(mu-O)(3)(mu(3-)PO(4))] (1) and [(L(OEt)Ti)(2)(mu-O)(mu-P(2)O(7))] (2), respectively. The structure of 1 consists of a Ti(3)O(3) core capped by a mu(3)-phosphato group. In 2, the [P(2)O(7)](4-) ligands binds to the two Ti's in a mu:eta(2),eta(2) fashion. Treatment of titanyl sulfate in dilute sulfuric acid with NaL(OEt) and 1.5 equiv of Na(2)Cr(2)O(7) gave [(L(OEt)Ti)(2)(mu-CrO(4))(3)] (3) that contains two L(OEt)Ti(3+) fragments bridged by three mu-CrO(4)(2-)-O,O' ligands. Complex 3 can act as a 6-electron oxidant and oxidize benzyl alcohol to give ca. 3 equiv of benzaldehyde. Treatment of [L(OEt)Ti(OTf)(3)] (OTf(-) = triflate) with [n-Bu(4)N][ReO(4)] afforded [[L(OEt)Ti(ReO(4))(2)](2)(mu-O)] (4). Treatment of [L(OEt)MF(3)] (M = Ti and Zr) with 3 equiv of [ReO(3)(OSiMe(3))] afforded [L(OEt)Ti(ReO(4))(3)] (5) and [L(OEt)Zr(ReO(4))(3)(H(2)O)] (6), respectively. Treatment of [L(OEt)MF(3)] with 2 equiv of [ReO(3)(OSiMe(3))] afforded [L(OEt)Ti(ReO(4))(2)F] (7) and [[L(OEt)Zr(ReO(4))(2)](2)(mu-F)(2)] (8), respectively, which reacted with Me(3)SiOTf to give [L(OEt)M(ReO(4))(2)(OTf)] (M = Ti (9), Zr (10)). Hydrolysis of [L(OEt)Zr(OTf)(3)] (11) with Na(2)WO(4).xH(2)O and wet CH(2)Cl(2) afforded the hydroxo-bridged complexes [[L(OEt)Zr(H(2)O)](3)(mu-OH)(3)(mu(3)-O)][OTf](4) (12) and [[L(OEt)Zr(H(2)O)(2)](2)(mu-OH)(2)][OTf](4) (13), respectively. The solid-state structures of 1-3, 6, and 11-13 have been established by X-ray crystallography. The L(OEt)Ti(IV) complexes can catalyze oxidation of methyl p-tolyl sulfide with tert-butyl hydroperoxide. The bimetallic Ti/ Re complexes 5 and 9 were found to be more active catalysts for the sulfide oxidation than other Ti(IV) complexes presumably because Re alkylperoxo species are involved as the reactive intermediates.  相似文献   

2.
1, 1'-(3-Oxapentamethylene)dicyclopentadiene [O(CH(2)CH(2)C(5)H(5))(2)], containing a flexible chain-bridged group, was synthesized by the reaction of sodium cyclopentadienide with bis(2-chloroethyl) ether through a slightly modified literature procedure. Furthermore, the binuclear cobalt(III) complex O[CH(2)CH(2)(eta(5)-C(5)H(4))Co(CO)I(2)](2) and insoluble polynuclear rhodium(III) complex {O[CH(2)CH(2)(eta(5)-C(5)H(4))RhI(2)](2)}(n) were obtained from reactions of with the corresponding metal fragments and they react easily with PPh(3) to give binuclear metal complexes, O[CH(2)CH(2)(eta(5)-C(5)H(4))Co(PPh(3))I(2)](2) and O[CH(2)CH(2)(eta(5)-C(5)H(4))Rh(PPh(3))I(2)](2), respectively. Complexes react with bidentate dilithium dichalcogenolato ortho-carborane to give eight binuclear half-sandwich ortho-carboranedichalcogenolato cobalt(III) and rhodium(III) complexes O[CH(2)CH(2)(eta(5)-C(5)H(4))Co(PPh(3))(E(2)C(2)B(10)H(10))](2) (E = S and Se), O[CH(2)CH(2)(eta(5)-C(5)H(4))](2)Co(2)(E(2)C(2)B(10)H(10)) (E = S and Se), O[CH(2)CH(2)(eta(5)-C(5)H(4))Co(E(2)C(2)B(10)H(10))](2) (E = S and Se and O[CH(2)CH(2)(eta(5)-C(5)H(4))Rh(PPh(3))(E(2)C(2)B(10)H(10))](2) (E = S and Se). All complexes have been characterized by elemental analyses, NMR spectra ((1)H, (13)C, (31)P and (11)B NMR) and IR spectroscopy. The molecular structures were determined by X-ray diffractometry.  相似文献   

3.
Zhu G  Parkin G 《Inorganic chemistry》2005,44(26):9637-9639
Mo(PMe(3))(6) and W(PMe(3))(4)(eta(2)-CH(2)PMe(2))H undergo oxidative addition of the O-H bond of RCO(2)H to yield sequentially M(PMe(3))(4)(eta(2)-O(2)CR)H and M(PMe(3))(3)(eta(2)-O(2)CR)(eta(1)-O(2)CR)H(2) (M = Mo and R = Ph, Bu(t); M = W and R = Bu(t)). One of the oxygen donors of the bidentate carboxylate ligand may be displaced by H(2)O to give rare examples of aqua-dihydride complexes, M(PMe(3))(3)(eta(1)-O(2)CR)(2)(OH(2))H(2), in which the coordinated water molecule is hydrogen-bonded to both carboxylate ligands.  相似文献   

4.
Epoxidations of alkyl-substituted alkenes, with hydrogen peroxide as the oxygen source, are catalyzed by CH(3)ReO(3) (MTO). The kinetics of 28 such reactions were studied in 1:1 CH(3)CN-H(2)O at pH 1 and in methanol. To accommodate the different requirements of these reactions, (1)H-NMR, spectrophotometric, and thermometric techniques were used to acquire kinetic data. High concentrations of hydrogen peroxide were used, so that diperoxorhenium complex CH(3)Re(O)(eta(2)-O(2))(2)(H(2)O), B, was the only predominant and reactive form of the catalyst. The reactions between B and the alkenes are about 1 order of magnitude more rapid in the semiaqueous solvent than in methanol. The various trends in reactivity are medium-independent. The rate constants for B with the aliphatic alkenes correlate closely with the number of alkyl groups on the olefinic carbons. The reactions become markedly slower when electron-attracting groups, such as halo, hydroxy, cyano, and carbonyl, are present. The rate constants for catalytic epoxidations with B and those reported for the stoichiometric reactions of dimethyldioxirane show very similar trends in reactivity. These findings suggest a concerted mechanism in which the electron-rich double bond of the alkene attacks a peroxidic oxygen of B. These data, combined with those reported for the epoxidation of styrene (a term intended to include related molecules with ring and/or aliphatic substituents) by B and by the monoperoxo derivative of MTO, suggest that all of the rhenium-catalyzed epoxidations occur by a common mechanism. The geometry of the system at the transition state can be inferred from these data, which suggest a spiro arrangement.  相似文献   

5.
The reactions of scandium atoms and O(2) have been reinvestigated using matrix isolation infrared spectroscopy and density functional theory calculations. A series of new oxygen-rich scandium oxide/dioxygen complexes were prepared and characterized. The ground state scandium atoms react with dioxygen to form OSc(eta(2)-O(3)), a side-on bonded scandium monoxide-ozonide complex. The OSc(eta(2)-O(3)) complex rearranges to a more stable Sc(eta(2)-O(2))(2) isomer under visible light irradiation, which is characterized to be a side-on bonded superoxo scandium peroxide complex. The homoleptic trisuperoxo scandium complex, Sc(eta(2)-O(2))(3), and the superoxo scandium bisozonide complex, (eta(2)-O(2))Sc(eta(2)-O(3))(2), are also formed upon sample annealing. The Sc(eta(2)-O(2))(3) complex is determined to have a D(3h) symmetry with three equivalent side-on bonded superoxo ligands around the scandium atom. The (eta(2)-O(2))Sc(eta(2)-O(3))(2) complex has a C(2) symmetry with two equivalent side-on bonded O3 ligands and one side-on bonded superoxo ligand.  相似文献   

6.
Oxide methanesulfonates of Mo, U, Re, and V have been prepared by reaction of MoO(3), UO(2)(CH(3)COO)(2)·2H(2)O, Re(2)O(7)(H(2)O)(2), and V(2)O(5) with CH(3)SO(3)H or mixtures thereof with its anhydride. These compounds are the first examples of solvent-free oxide methanesulfonates of these elements. MoO(2)(CH(3)SO(3))(2) (Pbca, a=1487.05(4), b=752.55(2), c=1549.61(5) pm, V=1.73414(9) nm(3), Z=8) contains [MoO(2)] moieties connected by [CH(3)SO(3)] ions to form layers parallel to (100). UO(2)(CH(3)SO(3))(2) (P2(1)/c, a=1320.4(1), b=1014.41(6), c=1533.7(1) pm, β=112.80(1)°, V=1.8937(3) nm(3), Z=8) consists of linear UO(2)(2+) ions coordinated by five [CH(3)SO(3)] ions, forming a layer structure. VO(CH(3)SO(3))(2) (P2(1)/c, a=1136.5(1), b=869.87(7), c=915.5(1) pm, β=113.66(1)°, V=0.8290(2) nm(3), Z=4) contains [VO] units connected by methanesulfonate anions to form corrugated layers parallel to (100). In ReO(3)(CH(3)SO(3)) (P1, a=574.0(1), b=1279.6(3), c=1641.9(3) pm, α=102.08(2), β=96.11(2), γ=99.04(2)°, V=1.1523(4) nm(3), Z=8) a chain structure exhibiting infinite O-[ReO(2)]-O-[ReO(2)]-O chains is formed. Each [ReO(2)]-O-[ReO(2)] unit is coordinated by two bidentate [CH(3)SO(3)] ions. V(2)O(3)(CH(3)SO(3))(4) (I2/a, a=1645.2(3), b=583.1(1), c=1670.2(3) pm, β=102.58(3), V=1.5637(5) pm(3), Z=4) adopts a chain structure, too, but contains discrete [VO]-O-[VO] moieties, each coordinated by two bidentate [CH(3)SO(3)] ligands. Additional methanesulfonate ions connect the [V(2)O(3)] groups along [001]. Thermal decomposition of the compounds was monitored under N(2) and O(2) atmosphere by thermogravimetric/differential thermal analysis and XRD measurements. Under N(2) the decomposition proceeds with reduction of the metal leading to the oxides MoO(2), U(3)O(7), V(4)O(7), and VO(2); for MoO(2)(CH(3)SO(3))(2), a small amount of MoS(2) is formed. If the thermal decomposition is carried out in a atmosphere of O(2) the oxides MoO(3) and V(2)O(5) are formed.  相似文献   

7.
Deprotonation of sodium acetylcyclopentadienide (11) was achieved by treatment with LDA in THF to generate the dianion equivalent [Cp-C(=CH(2))-O](2-)(12). Transmetalation with Cl(2)Ti(NMe(2))(2) gave ([Cp-C(=CH(2))-O]Ti(NMe(2))(2))(2) (17); treatment of 12 with Cl(2)Zr(NEt(2))(2)(THF)(2) furnished (([Cp-C(=CH(2))-O]Zr(NEt(2))(2))(2) (18). Cryoscopy in benzene revealed a dimeric structure of 18 in solution. Complex 18 was characterized further by an X-ray crystal structure analysis and by DFT calculations. The two zirconium centers of 18 are connected by means of two symmetry-equivalent eta(5):kappaO[Cp-C(=CH(2))-O] ligands. The ligand backbone shows no specific steric constraints, different from the formally related "constrained geometry" systems such as [Cp-SiMe(2)-NCMe(3)]Zr(NMe(2))(2) (1b). Nevertheless, upon treatment with MAO the CpCO group 4 metal complex system (18) generates an active homogeneous Ziegler-Natta catalyst for effective ethene/1-octene copolymerization, with up to 20% 1-octene having become incorporated in the resulting copolymer at 90 degrees C.  相似文献   

8.
The epoxidation of olefins by peroxo complexes of Cr(VI), Mo(VI) and W(VI) was investigated using the B3LYP hybrid density functional method. For the mono- and bisperoxo model complexes with the structures (NH(3))(L)M(O)(2)(-)(n)()(eta(2)-O(2))(1+)(n)() (n = 0, 1; L = none, NH(3); M = Cr, Mo, W) and ethylene as model olefin, two reaction mechanism were considered, direct oxygen transfer and a two-step insertion into the metal-peroxo bond. The calculations reveal that direct attack of the nucleophilic olefin on an electrophilic peroxo oxygen center via a transition state of spiro structure is preferred as significantly higher activation barriers were calculated for the insertion mechanism than for the direct mechanism. W complexes are the most active in the series investigated with the calculated activation barriers of direct oxygen transfer to ethylene decreasing in the order Cr > Mo > W. Barriers of bisperoxo species are lower than those of the corresponding monoperoxo species. Coordination of a second NH(3) base ligand to the mono-coordinated species, (NH(3))M(O)(2)(eta(2)-O(2)) and (NH(3))MO(eta(2)-O(2))(2), results in a significant increase of the activation barrier which deactivates the complex. Finally, based on a molecular orbital analysis, we discuss factors that govern the activity of the metal peroxo group M(eta(2)-O(2)), in particular the role of metal center.  相似文献   

9.
Gentle thermolysis of the allyl complex, CpW(NO)(CH(2)CMe(3))(eta(3)-H(2)CCHCMe(2)) (1), at 50 degrees C in neat hydrocarbon solutions results in the loss of neopentane and the generation of transient intermediates that subsequently activate solvent C-H bonds. Thus, thermal reactions of 1 with tetramethylsilane, mesitylene, and benzene effect single C-H activations and lead to the exclusive formation of CpW(NO)(CH(2)SiMe(3))(eta(3)-H(2)CCHCMe(2)) (2), CpW(NO)(CH(2)C(6)H(3)-3,5-Me(2))(eta(3)-H(2)CCHCMe(2)) (3), and CpW(NO)(C(6)H(5))(eta(3)-H(2)CCHCMe(2)) (4), respectively. The products of reactions of 1 with other methyl-substituted arenes indicate an inherent preference of the system for the activation of stronger arene sp(2) C-H bonds. For example, C-H bond activation of p-xylene leads to the formation of CpW(NO)(CH(2)C(6)H(4)-4-Me)(eta(3)-H(2)CCHCMe(2)) (5) (26%) and CpW(NO)(C(6)H(3)-2,5-Me(2))(eta(3)-H(2)CCHCMe(2)) (6) (74%). Mechanistic and labeling studies indicate that the transient C-H-activating intermediates are the allene complex, CpW(NO)(eta(2)-H(2)C=C=CMe(2)) (A), and the eta(2)-diene complex, CpW(NO)(eta(2)-H(2)C=CHC(Me)=CH(2)) (B). Intermediates A and B react with cyclohexene to form CpW(NO)(eta(3)-CH(2)C(2-cyclohexenyl)CMe(2))(H) (18) and CpW(NO)(eta(3)-CH(2)CHC)(Me)CH(2)C(beta)H(C(4)H(8))C(alpha)H (19), respectively, and intermediate A can be isolated as its PMe(3) adduct, CpW(NO)(PMe(3))(eta(2)-H(2)C=C=CMe(2)) (20). Interestingly, thermal reaction of 1 with 2,3-dimethylbut-2-ene results in the formation of a species that undergoes eta(3) --> eta(1) isomerization of the dimethylallyl ligand following the initial C-H bond-activating step to yield CpW(NO)(eta(3)-CMe(2)CMeCH(2))(eta(1)-CH(2)CHCMe(2)) (21). Thermolyses of 1 in alkane solvents afford allyl hydride complexes resulting from three successive C-H bond-activation reactions. For instance, 1 in cyclohexane converts to CpW(NO)(eta(3)-C(6)H(9))(H) (22) with dimethylpropylcyclohexane being formed as a byproduct, and in methylcyclohexane it forms the two isomeric complexes, CpW(NO)(eta(3)-C(7)H(11))(H) (23a,b). All new complexes have been characterized by conventional spectroscopic methods, and the solid-state molecular structures of 2, 3, 4, 18, 19, 20, and 21 have been established by X-ray crystallographic analyses.  相似文献   

10.
Reaction of [RuCl(2)(eta(6)-C(6)H(6))](2) with [10-(CH(3))(2)S-7,8-nido-C(2)B(9)H(10)](-) or [9-(CH(3))(2)S-7,8-nido-C(2)B(9)H(10)](-) afforded the expected cationic complexes [Ru(eta(5)-n-(CH(3))(2)S-7,8-C(2)B(9)H(10))(eta(6)-C(6)H(6))](+)(n= 10, (1); 9, (3)), but also the unexpected neutral Ru(eta(5)-10-HS-7,8-C(2)B(9)H(10))(eta(6)-C(6)H(6))(2) or Ru(eta(5)-9-(CH(3))S-7,8-C(2)B(9)H(10))(eta(6)-C(6)H(6))(4) by double and mono demethylation of the (CH(3))(2)S moiety, respectively.  相似文献   

11.
Lemma K  Bakac A 《Inorganic chemistry》2004,43(20):6224-6227
Oxygen atom transfer from (NH(3))(4)(H(2)O)RhOOH(2+) to organic and inorganic nucleophiles takes place according to the rate law -d[(NH(3))(4)(H(2)O)RhOOH(2+)]/dt = k[H(+)] [(NH(3))(4)(H(2)O)RhOOH(2+)][nucleophile] for all the cases examined. The third-order rate constants were determined in aqueous solutions at 25 degrees C for (CH(2))(5)S (k = 430 M(-)(2) s(-)(1), micro = 0.10 M), (CH(2))(4)S(2) (182, micro = 0.10 M), CH(3)CH(2)SH (8.0, micro = 0.20 M), (en)(2)Co(SCH(2)CH(2)NH(2))(2+) (711, micro = 0.20 M), and, in acetonitrile-water, CH(3)SPh (130, 10% AN, micro = 0.20 M), PPh(3) (3.74 x 10(3), 50% AN), and (2-C(3)H(7))(2)S (45, 50% AN, micro = 0.20 M). Oxidation of PPh(3) by (NH(3))(4)(H(2)O)Rh(18)O(18)OH(2+) produced (18)OPPh(3). The reaction with a series of p-substituted triphenylphosphines yielded a linear Hammett relationship with rho = -0.53. Nitrous acid (k = 891 M(-)(2) s(-)(1)) is less reactive than the more nucleophilic nitrite ion (k = 1.54 x 10(4) M(-)(2) s(-)(1)).  相似文献   

12.
The structures of bis(pyrazolylethyl) ether derivatives of zinc and cobalt, namely [eta(3)-O(CH(2)CH(2)pz(Pr)()i()2)(2)]Zn(NO(3))(2) and [eta(3)-O(CH(2)CH(2)pz(Me)()2)(2)]Co(NO(3))(2), have been determined with a view to addressing the applicability of such ligands in modeling bioinorganic aspects of zinc chemistry. Specific consideration is given to the possibility that bis(pyrazolylethyl) ether ligands may provide an NNO donor system which may model aspects of the binding of zinc to protein backbones in enzymes such as thermolysin. The structural studies demonstrate that the bis(pyrazolylethyl) ether ligands do indeed coordinate via each of their NNO functionalities but that the relationship to the enzyme is limited by the adoption of meridional rather than facial coordination geometries. [eta(3)-O(CH(2)CH(2)pz(Pr)()i()2)(2)]Zn(NO(3))(2) is monoclinic, P2(1)/c (No. 14), with a = 11.619(2) ?, b = 14.380(3) ?, c = 16.757(2) ?, beta = 90.44(2) degrees, and Z = 4. [eta(3)-O(CH(2)CH(2)pz(Me)()2)(2)]Co(NO(3))(2) is monoclinic, C2/c (No. 15), with a = 17.136(3) ?, b = 10.505(2) ?, c = 11.121(2) ?, beta = 104.62(3) degrees, and Z = 4.  相似文献   

13.
Decaborane(14) reacts with 1-(CH(3))(3)SiC&tbd1;CC(4)H(9) in the presence of dimethyl sulfide to give the new alkenyldecaborane 5-(S(CH(3))(2))-6-[(CH(3))(3)Si(C(4)H(9))C=CH]B(10)H(11) (I). Crystal data for 5-(S(CH(3))(2))-6-[(CH(3))(3)Si(C(4)H(9))C=CH]B(10)H(11): space group P2(1)/n, monoclinic, a = 9.471(1) ?, b = 13.947(3) ?, c = 17.678(3) ?, beta = 100.32(1) degrees. A total of 3366 unique reflections were collected over the range 2.0 degrees /= 3sigma(F(o)(2)) and were used in the final refinement. R(F)() = 0.083; R(w)(F)() = 0.094. The single-crystal X-ray structure of 5-(S(CH(3))(2))-6-[((CH(3))(3)Si)(2)C=CH]B(10)H(11) (A) is also reported. Crystal data for 5-(S(CH(3))(2))-6-[((CH(3))(3)Si)(2)C=CH]B(10)H(11): space group, P2(1)2(1)2(1), orthorhombic, a = 9.059 (3) ?, b = 12.193(4) ?, c = 21.431(3) ?. A total of 4836 unique reflections were collected over the range 6 degrees /= 3sigma(F(o)(2)) and were used in the final refinement. R(F)() = 0.052; R(w)(F)() = 0.059. The reactions of 5-(S(CH(3))(2))6-[(CH(3))(3)Si(C(4)H(9))C=CH]B(10)H(11) and 5-(S(CH(3))(2))6-[((CH(3))(3)Si)(2)C=CH]B(10)H(11) with a variety of alkyl isocyanides were investigated. All of the alkenyl monocarbon carboranes reported are the result of incorporation of the carbon atom from the isocyanide into the alkenyldecaborane framework and reduction of N&tbd1;C bond to a N-C single bond. The characterization of these compounds is based on (1)H and (11)B NMR data, IR spectroscopy, and mass spectrometry.  相似文献   

14.
Three new Mo(V) dithiolene compounds have been synthesized by addition of alkynes ((Me(3)Si)(2)C(2) (TMSA), (Me(3)Si)(2)C(4), and (Ph)(2)C(4) to MoO(2)S(2)(2-) in a MeOH/NH(3) mixture: [Mo(2)(O)(2)(mu-S)(2)(eta(2)-S(2))(eta(2)-S(2)C(2)H(2))](2)(-) 1, [Mo(2)(O)(X)(mu-S)(2)(eta(2)-S(2))(eta(2)-S(2)C(2)Ph(C(2)Ph))](2-) 2 (X = O or S), and [Mo(2)(O)(2)(mu-S)(2)(eta(2)-S(2))(eta(2)-S(2)C(2)H(C(2)H))](2-) 3. The structure of 1 as determined by single-crystal X-ray diffraction study (space group Pbca, a = 13.3148(1) A, b = 15.7467(4) A, c = 28.4108(7) A, V = 5956.7(2) A(3)) is discussed. 2 and 3 have been identified by ESMS (electrospray mass spectrometry), (1)H NMR, (13)C NMR, and infrared spectroscopies. This investigation completes our previous study devoted to the addition of DPA (C(2)Ph(2)) to MoO(2)S(2)(2-) which led to [Mo(2)(O)(X)(mu-S)(2)(eta(2)-S(2))(eta(2)-S(2)C(2)Ph(2))](2-) 4 (X = O or S). A reaction scheme is proposed to explain the formation of the different species present in solution. The reactivity of the remaining nucleophilic site of these complexes (eta(2)-S(2)) toward dicarbomethoxyacetylene (DMA) is also discussed.  相似文献   

15.
Jiang J  Holm RH 《Inorganic chemistry》2004,43(4):1302-1310
The active sites of tungstoenzymes have the formulations W(IV,V)L(S(2)pd)(2) and W(VI)LL'(S(2)pd)(2), in which two pyranopterindithiolene cofactor ligands (S(2)pd) are chelated to a tungsten atom. Ligands L and/or L' are not fully defined in any wild-type enzyme. The feasibility of various coordination fragments (functional groups) in potential bis(dithiolene)tungsten site analogues has been examined in previous work by exploratory synthesis. This investigation expands the range of accessible functional groups. The synthetic scheme originates with [W(CO)(2)(S(2)C(2)Me(2))(2)], whose carbonyl groups are labile to substitution. Complexes [W(IV,VI)LL'(S(2)C(2)Me(2))(2)](1-) are described in terms of their functional groups W(IV,VI)LL'. Reaction of the dicarbonyl with formate in acetonitrile/THF affords W(IV)(CO)(eta(1)-HCO(2)) (4) and in Me(2)SO W(VI)O(eta(1)-HCO(2)) (7) by an oxo transfer reaction. Carboxylates yield six-coordinate W(IV)(eta(2)-O(2)CR) (1-3, R = Ph, Me, Bu(t)) with C(2)(v) symmetry. Reaction of 3 (R = Bu(t)) with Me(3)SiSR (R = C(6)H(2)-2,4,6-Pr(i)(3)) gives W(IV)(SR) (5), which undergoes oxo and sulfido atom transfer to form W(VI)O(SR) (8) and W(VI)S(SR) (9), respectively. Attempts to prepare corresponding selenolate complexes, pertinent to the active site of formate dehydrogenase, were unsuccessful, including reactions of W(VI)OCl (10) with RSe(-). Structure proofs of 2-10 were obtained by X-ray structure determinations. Some 26 functional group types in bis(dithiolene)W(IV,V,VI) molecules have now been achieved by synthesis. It remains to be seen which are incorporated in an enzyme site. A number of them (e.g., 5) are directly analogous to molybdoenzyme sites, and may possess corresponding reactivity with biological substrates, as do W(IV)(OR)/W(VI)O(OR) (prepared earlier) in the reduction of N- and S-oxides by atom transfer.  相似文献   

16.
Hafnium atom oxidation by dioxygen molecules has been investigated using matrix isolation infrared absorption spectroscopy. The ground-state hafnium atom inserts into dioxygen to form primarily the previously characterized HfO(2) molecule in solid argon. Annealing allows the dioxygen molecules to diffuse and react with HfO(2) to form OHf(eta(2)-O(2))(eta(2)-O(3)), which is characterized as a side-on bonded oxo-superoxo hafnium ozonide complex. Under visible light (532 nm) irradiation, the OHf(eta(2)-O(2))(eta(2)-O(3)) complex either photochemically rearranges to a more stable Hf(eta(2)-O(2))(3) isomer, a side-on bonded di-superoxo hafnium peroxide complex, or reacts with dioxygen to form an unprecedented homoleptic tetra-superoxo hafnium complex: Hf(eta(2)-O(2))(4). The Hf(eta(2)-O(2))(4) complex is determined to possess a D(2d) geometry with a tetrahedral arrangement of four side-on bonded O(2) ligands around the hafnium atom, which thus presents an 8-fold coordination. These oxygen-rich complexes are photoreversible; that is, formation of Hf(eta(2)-O(2))(3) and Hf(eta(2)-O(2))(4) is accompanied by demise of OHf(eta(2)-O(2))(eta(2)-O(3)) under visible (532 nm) light irradiation and vice versa with UV (266 nm) light irradiation.  相似文献   

17.
Pathways for the reaction of ethene with diazomethane to cyclopropane and dinitrogen catalyzed by Pd(0) complexes have been investigated at the B3LYP level of theory. The computed Gibbs free activation energy of 71.7 kJ mol(-1) for the most favorable catalytic cycle is by far lower than previously reported computed barriers for Pd(II)-catalyzed pathways of this reaction and is now in the range of experimental expectations. Pd(eta(2)-C(2)H(4))(2) is predicted to be the resting state of the catalyst and the product of a Pd(OAc)(2) precatalyst reduction. The Pd(0) ethene complex is in equilibrium with Pd(eta(2)-C(2)H(4))(kappaC-CH(2)N(2)), from which N(2) is eliminated in the rate-determining step. The resulting carbene complex (eta(2)-C(2)H(4))Pd=CH(2) reacts without intrinsic barrier with CH(2)N(2) to Pd(eta(2)-C(2)H(4))(2) and N(2) and with ethene to the palladacyclobutane (eta(2)-C(2)H(4))Pd(II)[kappaC(1),kappaC(3)-(CH(2))(3)]. The N(2) elimination from Pd(eta(2)-C(2)H(4))(2)(kappaC-CH(2)N(2)) to (eta(2)-C(2)H(4))(2)Pd=CH(2) leads to an overall Gibbs free activation energy of 84.2 kJ mol(-1). The intramolecular rearrangement of (eta(2)-C(2)H(4))(2)Pd=CH(2) to the palladacyclobutane (eta(2)-C(2)H(4))Pd(II)[kappaC(1),kappaC(3)-(CH(2))(3)] and the subsequent reductive elimination of cyclopropane are facile. At the BP86 level of theory, Pd(0) preferentially coordinates three ligands. Pd(eta(2)-C(2)H(4))(3) is predicted to be the resting state, and the N(2) elimination from the model complex Pd(eta(2)-C(2)H(4))(2)(kappaC-CH(2)N(2)) is the rate-determining transition state leading to an overall Gibbs free activation energy of 69.4 kJ mol(-1).  相似文献   

18.
The reactions of nitriles (RCN) with arachno-4,6-C(2)B(7)H(12)(-) provide a general route to functionalized tricarbadecaboranyl anions, 6-R-nido-5,6,9-C(3)B(7)H(9)(-), R = C(6)H(5) (2(-)), NC(CH(2))(4) (4(-)), (p-BrC(6)H(4))(Me(3)SiO)CH (6(-)), C(14)H(11) (8(-)), and H(3)BNMe(2)(CH(2))(2) (10(-)). Further reaction of these anions with (eta(5)-C(5)H(5))Fe(CO)(2)I yields the functionalized ferratricarbadecaboranyl complexes 1-(eta(5)-C(5)H(5))-2-C(6)H(5)-closo-1,2,3,4-FeC(3)B(7)H(9) (3), 1-(eta(5)-C(5)H(5))-2-NC(CH(2))(4)-closo-1,2,3,4-FeC(3)B(7)H(9) (5), 1-(eta(5)-C(5)H(5))-2-[(p-BrC(6)H(4))(Me(3)SiO)CH]-closo-1,2,3,4-FeC(3)B(7)H(9) (7), 1-(eta(5)-C(5)H(5))-2-C(14)H(11)-closo-1,2,3,4-FeC(3)B(7)H(9) (9), and 1-(eta(5)-C(5)H(5))-2-H(3)BNMe(2)(CH(2))(2)-closo-1,2,3,4-FeC(3)B(7)H(9) (11). Reaction of 11 with DABCO (triethylenediamine) resulted in removal of the BH(3) group coordinated to the nitrogen of the side chain, giving 1-(eta(5)-C(5)H(5))-2-NMe(2)(CH(2))(2)-closo-1,2,3,4-FeC(3)B(7)H(9) (12). Crystallographic studies of complexes 3, 5, 7, 9, and 11 confirmed that these complexes are ferrocene analogues in which a formal Fe(2+) ion is sandwiched between the cyclopentadienyl and tricarbadecaboranyl monoanionic ligands. The metals are eta(6)-coordinated to the puckered six-membered face of the tricarbadecaboranyl cage, with the exopolyhedral substituents bonded to the low-coordinate carbon adjacent to the iron.  相似文献   

19.
Cationic half-sandwich complexes containing the [(eta(5)-C(5)Me(5))M(Diphos*)] moiety (M=Rh, Ir; Diphos*=chiral diphosphine ligand) catalyze the cycloaddition of the nitrone 3,4-dihydroisoquinoline N-oxide (A) to methacrylonitrile (B) with excellent regio and endo selectivity and low-to-moderate enantioselectivity. The most active and selective catalyst, (S(Rh),R(C))-[(eta(5)-C(5)Me(5))Rh{(R)-Prophos)} (NC(Me)C==CH(2))](SbF(6))(2), has been isolated and fully characterized including the determination of the molecular structure by X-ray diffraction. The R-at-metal epimers of the complexes [(eta(5)-C(5)Me(5))M{(R)-Prophos)}(NC(Me)C==CH(2))](SbF(6))(2) (M=Rh, Ir) isomerize to the corresponding S-at-metal diastereomers. The stoichiometric cycloaddition of A with B is catalyzed by diastereopure (S(M),R(C))-[(eta(5)-C(5)Me(5))M{(R)-Prophos)}(NC(Me)C==CH(2))](SbF(6))(2) with perfect regio and endo selectivity and very good (up to 95 %) ee. The catalyst can be recycled up to nine times without significant loss of either activity or selectivity.  相似文献   

20.
Espenson JH  Yiu DT 《Inorganic chemistry》2000,39(18):4113-4118
The stable compound CH3ReO3 (MTO), upon treatment with aqueous hypophosphorous acid, forms a colorless metastable species designated MDO, CH3ReO2(H2O)n (n = 2). After standing, MDO is first converted to a yellow dimer (lambda max = 348 nm; epsilon = 1.3 x 10(4) L mol-1 cm-1). That reaction follows second-order kinetics with k = 1.4 L mol-1 s-1 in 0.1 M aq trifluoromethane sulfonic acid at 298 K. Kinetics studies as functions of temperature gave delta S++ = -4 +/- 15 J K-1 mol-1 and delta H++ = 71.0 +/- 4.6 kJ mol-1. A much more negative value of delta S++ would be expected for simple dimerization, suggesting the release of one or more molecules of water in forming the transition state. If solutions of the dimer are left for a longer period, an intense blue color results, followed by precipitation of a compound that does, even after a long time, retain the Re-CH3 bond in that aq. hydrogen peroxide generates the independently known CH3Re(O)(O2)2(H2O). The blue compound may be analogous to the intensely colored purple cation [(Cp*Re)3(mu 2-O)3(mu 3-O)3ReO3]+. If a pyridine N-oxide is added to the solution of the dimer, it is rapidly but not instantaneously lost at the same time that a catalytic cycle, separately monitored by NMR, converts the bulk of the PyO to Py according to this stoichiometric equation in which MDO is the active intermediate: C5H5NO + H3PO2-->C5H5N + H3PO3. A thorough kinetic study and the analysis by mathematical and numerical simulations show that the key step is the conversion of the dimer D into a related species D* (presumably one of the two mu-oxo bonds has been broken); the rate constant is 5.6 x 10(-3) s-1. D* then reacts with PyO just as rapidly as MDO does. This scheme is able to account for the kinetics and other results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号