首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A 300-nm-thick cadmium sulfide epitaxial layer on silicon was grown for the first time. The grown was performed by the method of evaporation and condensation in a quasi-closed volume at a substrate temperature of 650°C and a growth time of 4 s. In order to avoid a chemical reaction between silicon and cadmium sulfide (at this temperature, the rate constant of the reaction is ~103) and to prevent etching of silicon by sulfur, a high-quality silicon carbide buffer layer ~100 nm thick was preliminarily synthesized by the substitution of atoms on the silicon surface. The ellipsometric, Raman, electron diffraction, and trace element analyses showed a high structural perfection of the CdS layer and the absence of a polycrystalline phase.  相似文献   

2.
Chemical state of cadmium in a hepatopancreas of a scallop (Patinopecten yessoensis) was studied by means of synchrotron radiation‐based X‐ray analytical techniques. X‐ray absorption fine structure (XAFS) and X‐ray fluorescence (XRF) imaging were used to identify the chemical state and the distribution of cadmium in the hepatopancreas, respectively. The results of in vivo Cd K‐edge XAFS suggested that the neighboring atoms of the cadmium in the hepatopancreas are of sulfur. Therefore, we propose that cadmium was accumulated by a metalloprotein with sulfur. Micro XRF imaging of thin sections of the hepatopancreas showed that cadmium is distributed on the surface of intestinal epithelia and concentrated in the internal tissue of the hepatopancreas. These results indicated that scallops accumulate cadmium inside the hepatopancreas through the intestinal epithelium.  相似文献   

3.
Published measurements of sulfur vapor pressure and silver electromotive force were used to determine thermodynamic properties of silver sulfide above 379 K. They were Gibbs-Duhem integrated to estimate the formation properties of stoichiometric Ag2S of fcc, bcc, and monoclinic crystal structures. Statistical thermodynamics was applied to estimate free energies and find possible atom arrangements in off-stoichiometric silver sulfide. Theoretical calculations show that silver vacancies and atoms may be in quasi-chemical equilibrium between tetrahedral and octahedral sites in the fcc structure and between two states of atoms within tetrahedral sites in the bcc structure and within octahedral sites in the monoclinic structure. A strong indication is that vacancy clusters should predominate, each containing four-atom vacancies in the fcc phase and three-atom vacancies in the bcc phase.  相似文献   

4.
The water-soluble silver ion-doped cadmium sulfide nanocrystals were synthesized by a co-precipitation technique in aqueous solution using L-cysteine as surface modifier, and then L-cysteine-modified cadmium sulfide doped with silver ion/zinc sulfide core/shell nanocrystals were prepared by zinc sulfide epitaxial coated on surface of silver ion-doped cadmium sulfide nanocrystals. The crystal structure, morphology, and spectral properties of cadmium sulfide doped with silver ion/zinc sulfide nanocrystals were characterized by X-ray power diffraction, transmission electron microscope, infrared spectrum, and photoluminescence spectrum. The results show that the photoluminescence quantum yield of cadmium sulfide doped with silver ion/zinc sulfide nanocrystals is improved greatly after doped with silver ion and coated with zinc sulfide shell. The cysteine modified on the surface of cadmium sulfide doped with silver ion/zinc sulfide nanocrystals renders the nanocrystals water-soluble and biocompatible.  相似文献   

5.
罗强  唐斌  张智  冉曾令 《物理学报》2013,62(7):77101-077101
基于密度泛函理论第一性原理, 在广义梯度近似下, 研究了表面覆盖度为0.25 ML (monolayer)时硫化氢分子在Fe(100)面吸附的结构和电子性质, 并与单个硫原子吸附结果进行了对比. 结果表明: 硫化氢分子吸附在B2位吸附能最小为-1.23 eV, 最稳定, B1位吸附能最大为-0.01 eV, 最不稳定; 并对硫化氢分子在B1位和B2位吸附后的电子态密度进行了分析, 也表明了吸附在B2位稳定, 且吸附在B2位后硫化氢分子几何结构变化不大; 将硫化氢中硫原子吸附与单个硫原子吸附的电子性质进行了比较, 发现前者吸附作用非常微弱; 同时对吸附后的Fe(100)面进行了对比, 单个硫原子吸附的Fe(100)面电子态密度出现了一系列峰值且离散分布, 生成了硫化亚铁, 表明在硫化氢环境下, 主要是硫化氢析出的硫原子发生了吸附. 关键词: 第一性原理 Fe(100)表面 吸附能 硫化氢  相似文献   

6.
Auger studies of the surface composition of a Pd/Ag alloy (6040 wt%) display reversible, temperature dependent enhancement of silver in the absence of sulfur. Co-segregation of sulfur effects a strong depletion of silver in the detected volume. No evidence could be found for the surface formation of a bulk palladium sulfide. In the absence of compound formation, the silver depletion can be qualitatively understood in terms of a recent ternary solution model which incorporates solute—solute interactions.  相似文献   

7.
In p and n type CdP2 samples (tetragonal modification) narrow symmetric absorption bands with energy maxima at 1.77, 1.69, 1.60, and 1.50 eV were observed using laser spectroscopy. They depend strongly on the mutual orientation of the electric vector of the radiation and the optical c axis of the crystal. The results found experimentally can easily be explained as complexes consisting of deep acceptors which are doubly-charged cadmium vacancies and shallow substitutional donor atoms S, occupying phosphorus sites in the 1-st, 2-nd, 3-rd, and 4-th coordination spheres relative to the cadmium vacancies. Kiev State Pedagogical University. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 83–88, July, 1998.  相似文献   

8.
《Applied Surface Science》1987,27(4):437-452
The surface oxidation in air and air-saturated aqueous solutions of the iron sulfide mineral, pyrite, has been studied by X-ray photoelectron spectroscopy. Iron sulfate was produced on fracture surfaces within the first few minutes of exposure to air under ambient conditions. Iron oxide was also included in the oxidation products after prolonged exposure which implies that a sulfur product in addition to sulfate must be formed. It is suggested that this product is an iron-deficient sulfide. Elemental sulfur was not evident at surfaces exposed to air. Iron oxide rather than sulfate was present at abraded surfaces exposed to air for a few minutes. Oxidation of pyrite in air-saturated acid solutions resulted in the formation of a surface sulfur layer the extent and nature of which depended on solution composition and exposure time. Sulfate was the only sulfur oxidation product identified in alkaline solutions not containing soluble sulfide, and iron oxide remained at the surface after such treatment. Thin layers of elemental sulfur were observed at fracture surfaces immersed in aerated, dilute sodium sulfide solutions.  相似文献   

9.
A different effect of (0001) and (000[`1]\bar{1}) crystal facets of the cadmium sulfide (CdS) wurtzite structure terminated with Cd and S atoms, respectively, was observed in respect to the properties of the crystal surface and interface with metal or organic semiconductor contacts. In addition to the different surface morphology, a bare CdS single crystal showed different features in photoluminescence from the Cd- and S-terminated surfaces. Different adhesive behavior of poly(3,4-ethylenedioxythiophene): poly(styrene sulfonic acid) (PEDOT:PSS) films in respect to the Cd- and S-terminated facets of the crystal has also been found. Photovoltaic properties of hybrid CdS/PEDOT:PSS heterojunctions have been shown to be sensitive in respect to the crystal facet used. Thin films of aluminum (Al) equally deposited onto the opposite crystal facets revealed much smaller sheet resistance on the sulfur facet than on the cadmium one, which has been assigned to the difference in both chemical interaction with the surface atoms and surface morphology. Current–voltage characteristics of an apparently symmetric Al/CdS/Al structure with Al electrodes deposited onto the opposite crystal facets showed asymmetric behavior depending on the bias direction applied to the Cd or S-terminated facet, with the barrier for electrons at the Al/S-terminated interface, respectively.  相似文献   

10.
The grain boundary potential and interface state charge density at the grain boundaries of silver sulfide (Ag2S) thin films prepared by chemical conversion of cadmium sulfide (CdS) films have been determined from the dc resistance of the material and are found to be sensitive to annealing. A reduction in the grain boundary potential and the grain boundary charge density of the film has been noticed when the source CdS film is annealed at different temperatures prior to chemical conversion. The variation in the grain boundary charge density of the grown Ag2S film with source annealing temperature has been found to be similar to that of thin cadmium sulfide film, reported earlier. An additional low temperature heat treatment of the sample results in an enhancement in the charge density at the grain boundaries. The change in the silver vacancy and/or oxygen and sulfur content of the films as revealed from the energy dispersive spectra of the films suggests possible role of film composition on the grain boundary charge density.  相似文献   

11.
The effect of high-power (high-voltage) nanosecond pulses on the phase composition and chemical state of atoms of surface layers of sulfide minerals with different semiconductor properties (galenite, molybdenite, and sphalerite) is investigated by means of XPES. Common patterns and characteristic features of the structural phase transformations of sulfide surfaces under the pulsed energetic effect are the formation and growth of a surface layer by the nonstoichiometric sulfur-enriched sulfide phase and Zn and Mo oxides and hydroxides; the staged character of the transformation of sulfur atoms in the composition of galenite and sphalerite surface layers; and the stability of the chemical state of sulfur in the molybdenite composition and lead atoms in the galenite composition.  相似文献   

12.
Water-soluble cadmium selenide/cadmium sulfide/zinc sulfide core/shell/shell quantum dots were synthesized in aqueous solution using trisodium citrate as modifier. The crystal structure, morphology, component, and spectral properties of cadmium selenide/cadmium sulfide/zinc sulfide core/shell/shell quantum dots were characterized by X-ray power diffraction, transmission electron microscope, energy dispersive X-ray analysis, infrared spectrum, ultraviolet–visible absorption spectrum, and fluorescence spectrum. The results show that the spherical citrate-modified cadmium selenide/cadmium sulfide/zinc sulfide core/shell/shell quantum dots with diameter around 3.6 nm belong to the cubic zinc blende structure. The citrate-modified cadmium selenide/cadmium sulfide/zinc sulfide core/shell/shell quantum dots show a narrow, symmetric, and strong fluorescence emission spectrum band with narrow full width at half maximum of 53 nm, and the fluorescence quantum yield can reach up to 37.3%. The high-quality citrate-modified cadmium selenide/cadmium sulfide/zinc sulfide core/shell/shell quantum dots with good fluorescence properties have potential for application in biological fluorescence analysis.  相似文献   

13.
《Applied Surface Science》1987,27(4):423-436
Photocorrosion of cadmium sulfide electrodes in aqueous electrolytes leads to sulfate formation in the presence and to sulfur formation in the absence of oxygen. All three sulfur species involved (S2−, S0 and SO2−4) can be detected on CdS electrodes after treatment in photoelectrochemical cells using AES or XPS. Both, the S2p/3p XPS and the S Auger peaks are broadened on photoelectrochemical oxidized CdS due to deposition of elemental sulfur. The XPS binding energy of the S electrons is shifted by about 1 eV per sulfur oxidation step from around 161.5 eV for S2− to around 163.5 eV for S0 and around 168 eV for SO2−4. The results obtained by photoelectron spectroscopy of electrodes transferred from the electrolyte directly into the UHV system without any cleaning and special precautions are in excellent agreement with the predictions based on photoelectrochemical experiments. For example, it could be proved by XPS that sulfur was transformed into sulfate in a reductive oxidation step in the presence of oxygen, leading to the CdS surface being cleaned of S0.  相似文献   

14.
A method for calculating the x-ray diffraction patterns of cadmium sulfide nanoparticles with a disordered internal structure, a real surface, shape, and size is proposed within the kinematic theory of scattering. A computer analysis has revealed that the characteristic shape of the experimental x-ray diffraction patterns of cadmium sulfide films and powders is determined by a specific disordered nanoparticle structure differing from the crystal structures of wurtzite and sphalerite. According to the computer simulation, cadmium sulfide nanoparticles synthesized through chemical deposition have a shape similar to a hexagonal prism with a characteristic size of approximately 5 nm.  相似文献   

15.
The growth mechanism of cadmium sulfide nanomaterials, including nanodots, nanotubes, and nanorods, within titanium dioxide nanotubes via solution deposition method was investigated. The materials obtained were characterized by field emission scanning electron microscopy, UV-visible spectroscopic and photoelectrochemical techniques. The results revealed that: (1) the concentration of ions introduced into the tubes influenced the morphology of the cadmium sulfide obtained: at low concentration, defects on the tube walls induce heterogeneous nucleation hence cadmium sulfide was observed attaching to the walls; at high concentration, particle aggregation occur due to negligible repulsion between the nuclei resulting in sedimentation of cadmium sulfide particles; (2) cadmium sulfide prefers to grow on seeds formed initially, so that nanodots or nanotubes and nanorods were formed at low and at high concentrations respectively; (3) the order of ions introduction also influences the morphology of cadmium sulfide formed within the tubes, (4) the photoresponse of the obtained nanomaterials was extended efficiently; and (5) the photoelectrochemical properties were strongly influenced by both the amount and the morphology of the deposited CdS sensitizer.  相似文献   

16.
ABSTRACT

Molybdenum disulfide (MoS2) is a common two-dimensional semiconductor that has been highly studied as an emerging material for catalysis and electronics. The most common material defects in MoS2 are sulfur vacancies. In order to reveal the nature of the trapped states induced by sulfur vacancies, we perform Density Functional Theory (DFT) combined with quantum dynamics calculations. According to our model, we find that the sulfur vacancies create trap states in the original band gap of monolayer MoS2 that disrupt charge transmission through the monolayer. In addition, we did not find any resonance states among the shallow states in the conduction band continuum.  相似文献   

17.
谢涛  伍英  廉小亲  吴叶兰 《应用声学》2015,23(11):19-19
针对传统碳硫分析仪单片机控制频繁出现通信中断及接口单一的情况,以TMS320F2806数字信号处理器作为主控单元,设计了24位高精度ADS1224芯片模数转换电路、CH376 USB通讯电路以及W5500以太网通讯电路。在CCS2.0环境实现了TMS320F2806处理器对各功能模块的SPI程序控制。调用CH376 API函数、Socket套接字编程在VC++6.0平台分别测试了USB与以太网双接口数据传输性能。结果表明TMS320F2806与各功能模块电路设计准确、时序控制有效。数据分析的准确性与精密性可以满足在工业环境下铁基合金中碳量与硫量的测定。  相似文献   

18.
Treatment of the InAs(100) surface with a 1M aqueous solution of sodium sulfide (Na2S) is found to result in the removal of a natural oxide layer from this surface with the formation of a continuous chemisorbed passivating layer of sulfur atoms that are coherently bonded to indium atoms of the crystal surface. No etching of the InAs surface in the sulfide solution occurs. The passivated InAs samples are characterized by a multiple increase in the photoluminescence intensity. The sulfide layer is desorbed from the InAs surface at temperatures of ~400°C. This leads to the formation of a clean In-stabilized (100) surface with a (4 × 2) reconstruction. A simple technique is developed using sulfide passivation for preparing atomically smooth (2 × 4) growth surfaces of the InAs(100) substrates that are suitable for molecular-beam epitaxy of highly perfect layers of compounds based on CdSe.  相似文献   

19.
A novel phosphazene groups modified sulfur composites cathode [triphosphazene sulfide composite (PS) or nitroaniline–triphosphazene disulfide composite (NPS)] which can give good affinity with electrolytes was prepared. Their chemical structures were identified by FTIR and XRD analysis. SEM analysis showed PS and NPS had a denser and rougher surface structure than elemental sulfur, with many tiny pores on the surface. Contact angles measurement showed that PS had a hydrophilic surface, which exhibited better affinity of ether solvent. When used as a cathode material in lithium–sulfur batteries, its initial discharge capacity was 1,109 mAh/g for NPS, 784 mAh/g for PS. Discharge capacity of NPS was higher than charge capacity, which implied nitroanilino base on sulfur particles involving in generation of polysulfides.  相似文献   

20.
Angle-resolved photoelectron spectra of benzenethiol chemisorbed on the Cu(110) face have been obtained with p- and s-polarized HeI (21.2 eV) radiation at room temperature. Comparison with the gas-phase spectrum and molecular-orbital correlation diagrams indicates that the benzenethiol bonds to the copper by way of the sulfur, rather than phenyl ring π-orbitals, and that the adsorption is dissociative, yielding a phenyl sulfide (mercaptide) surface species. An analysis of the polarization/angular dependence of the band intensities and comparison to symmetry-allowed transitions confirms that the molecule has the plane of the phenyl ring perpendicular to the surface. The assumed C2v symmetry together with packing considerations further allows the orientation of the molecule and nature of the bonding to be suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号