首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Carbon-carbon bond-forming reductive elimination of biphenyl is observed upon two-electron oxidation of the [ZrIVPh2(ap)2]2- dianion. Crossover experiments confirm that the C-C bond-forming step occurs at a single zirconium metal center. The reactivity is enabled by the participation of a redox-active amidophenolate ligand set.  相似文献   

2.
3.
Platinum(IV) complexes containing monodentate sulfonamide ligands, fac-(dppbz)PtMe(3)(NHSO(2)R) (dppbz = o-bis(diphenylphosphino)benzene; R = p-C(6)H(4)(CH2)(3)CH(3) (1a), p-C(6)H(4)CH(3) (1b), CH(3) (1c)), have been synthesized and characterized, and their thermal reactivity has been explored. Compounds 1a-c undergo competitive C-N and C-C reductive elimination upon thermolysis to form N-methylsulfonamides and ethane, respectively. Selectivity for either C-N or C-C bond formation can be achieved by altering the reaction conditions. Good yields of the C-N-coupled products were observed when the thermolyses of 1a-c were conducted in benzene-d(6). In contrast, exclusive C-C reductive elimination occurred upon themolysis of 1a,b in nitrobenzene-d(5). When the thermolyses of 1a were performed in the presence of sulfonamide anion NHSO2R- in benzene-d(6), ethane elimination was completely inhibited and C-N reductive elimination products were formed in high yield. Mechanistic studies support a two-step reaction pathway involving initial dissociation of NHSO(2)R(-) from the platinum center, followed by nucleophilic attack of this anion on a methyl group of the resulting five-coordinate platinum(IV) cation to form MeNHSO(2)R and (dppbz)PtMe(2). C-C reductive elimination to form ethane occurs directly from the five-coordinate Pt(IV) cation.  相似文献   

4.
Alkynes induce reductive elimination of alkane from Cp2Zr(H)(R); zirconacyclopentadienes are formed as well.  相似文献   

5.
Upon the addition of Br2 to complexes (P-P)Pt(Ar)2, two different products were observed, depending on the bite angle of the bidentate phosphine ligand: a Pt(II) aryl bromide complex, the product of C-Br reductive elimination, and Pt(IV) oxidative addition complex. At high temperatures, the latter exclusively gave the product of the C-C reductive elimination.  相似文献   

6.
The platinum(IV) complexes fac-L(2)PtMe(3)(OR) (L(2) = bis(diphenylphosphino)ethane, o-bis(diphenylphosphino)benzene, R = carboxyl, aryl; L = PMe(3), R = aryl) undergo reductive elimination reactions to form carbon-oxygen bonds and/or carbon-carbon bonds. The carbon-oxygen reductive elimination reaction produces either methyl esters or methyl aryl ethers (anisoles) and L(2)PtMe(2), while the carbon-carbon reductive elimination reaction affords ethane and L(2)PtMe(OR). Choice of reaction conditions allows the selection of either type of coupling over the other. A detailed mechanistic study of the reductive elimination reactions supports dissociation of the OR(-) ligand as the initial step for the C-O bond formation reaction. This is followed by a nucleophilic attack of OR(-) upon a methyl group bound to the Pt(IV) cation to produce the products MeOR and L(2)PtMe(2). C-C reductive elimination proceeds from L(2)PtMe(3)(OR) by initial L (L = PMe(3)) or OR(-) (L(2) = dppe, dppbz) dissociation, followed by C-C coupling from the resulting five-coordinate intermediate. Our studies demonstrate that both C-C and C-O reductive elimination reactions from Pt(IV) are more facile in polar solvents, in the presence of Lewis acids, and for OR(-) groups that contain electron withdrawing substituents.  相似文献   

7.
Cationic complexes of the type fac-[(L(2))Pt(IV)Me(3)(pyr-X)][OTf] (pyr-X = 4-substituted pyridines; L(2) = diphosphine, viz., dppe = bis(diphenylphosphino)ethane and dppbz = o-bis(diphenylphosphino)benzene; OTf = trifluoromethanesulfonate) undergo C-C reductive elimination reactions to form [L(2)Pt(II)Me(pyr-X)][OTf] and ethane. Detailed studies indicate that these reactions proceed by a two-step pathway, viz., initial reversible dissociation of the pyridine ligand from the cationic complex to generate a five-coordinate Pt(IV) intermediate, followed by irreversible concerted C-C bond formation. The reaction is inhibited by pyridine. The highly positive values for DeltaS()(obs) = +180 +/- 30 J K(-1) mol(-1), DeltaH(obs) = 160 +/- 10 kJ mol(-1), and DeltaV()(obs) = +16 +/- 1 cm(3) mol(-1) can be accounted for in terms of significant bond cleavage and/or partial reduction from Pt(IV) to Pt(II) in going from the ground to the transition state. These cationic complexes have provided the first opportunity to carry out detailed studies of C-C reductive elimination from cationic Pt(IV) complexes in a variety of solvents. The absence of a significant solvent effect for this reaction provides strong evidence that the C-C reductive coupling occurs from an unsaturated five-coordinate Pt(IV) intermediate rather than from a six-coordinate Pt(IV) solvento species.  相似文献   

8.
Coupled mechanical forces are known to drive a range of covalent chemical reactions, but the effect of mechanical force applied to a spectator ligand on transition metal reactivity is relatively unexplored. Here we quantify the rate of C(sp2)–C(sp2) reductive elimination from platinum(ii) diaryl complexes containing macrocyclic bis(phosphine) ligands as a function of mechanical force applied to these ligands. DFT computations reveal complex dependence of mechanochemical kinetics on the structure of the force-transducing ligand. We validated experimentally the computational finding for the most sensitive of the ligand designs, based on MeOBiphep, by coupling it to a macrocyclic force probe ligand. Consistent with the computations, compressive forces decreased the rate of reductive elimination whereas extension forces increased the rate relative to the strain-free MeOBiphep complex with a 3.4-fold change in rate over a ∼290 pN range of restoring forces. The calculated natural bite angle of the free macrocyclic ligand changes with force, but 31P NMR analysis and calculations strongly suggest no significant force-induced perturbation of ground state geometry within the first coordination sphere of the (P–P)PtAr2 complexes. Rather, the force/rate behavior observed across this range of forces is attributed to the coupling of force to the elongation of the O⋯O distance in the transition state for reductive elimination. The results suggest opportunities to experimentally map geometry changes associated with reactions in transition metal complexes and potential strategies for force-modulated catalysis.

The influence of mechanical force on the rates of model reductive elimination reactions depends on the structure of the force-transducing ligand and provides a measure of geometry changes upon reaching the transition state.  相似文献   

9.
In developing a method for possible low level isotopic enrichment, which uses to advantage the equilibrium isotope effect observed during U(1V)-U(VI) electron exchange reaction in sulphate solutions, details of a solvent extraction process involving high concentration of a mixture of U(IV) and U(VI) and at low acid concentrations, are described. The extraction behaviour of uranium under these conditions is discussed. During the extraction with amines, U(IV) tended to get oxidised in sulphate solutions.  相似文献   

10.
The compositions of the equilibrium vapors above U(BH4)4 and U(BD4)4 at 23° were analyzed by mass spectrometry and only monomeric molecular ions, U(BH4-x)y+, were detected. Infrared spectra for the molecules were recorded in the frequency range 4000-200 cm−1 for vapors contained in a variable path (1–20m) cell at 23°, from inert gas, low temperature matrices and low temperature thin-films. The data collected in this study are correlated with previously recorded data from vapors of U(BH4)4 generated at 40–50°. Several spectral features pertinent to the eventual complete vibrational spectroscopic definition of U(BH4)4 and U(BD4)4 are discussed.  相似文献   

11.
The bis(stibido) complex CpCp*Hf(SbMes2)2 (2) was prepared and structurally characterized. Complex 2 reacts with 2 equiv of xylylisocyanide to give the bis-insertion product CpCp*Hf[C(SbMes2)=N(2,6-MeC6H3)]2 (4). The reaction of 2 with oxidants (I2 and O2) or donors (carbon monoxide and diphenylacetylene) or thermolysis promotes the reductive elimination of Sb2Mes4.  相似文献   

12.
This communication describes the synthesis of a family of unusually stable palladium(IV) complexes containing two chelating 2-phenylpyridine ligands and two benzoates. These complexes undergo clean C-O bond-forming reductive elimination upon heating, and the mechanism of this catalytically relevant process has been studied in detail. Solvent effects, crossover experiments, Eyring plots (which show DeltaS of -1.4 +/- 1.9 and 4.2 +/- 1.4 in CDCl3 and DMSO, respectively), and Hammett analysis (which shows rho = -1.36 +/- 0.04 upon substitution of the para-benzoate substituent) all suggest that reductive elimination does not proceed via initial dissociation of a benzoate ligand. Instead, an unusual mechanism involving pre-equilibrium dissociation of the N-arm of the phenylpyridine ligand is proposed.  相似文献   

13.
14.
The first example of associative displacement of dioxygen from a peroxopalladium(II) complex is reported. Electron-deficient alkenes, p-X-trans-beta-nitrostyrene (X = OCH3, CH3, H, F, Br, CF3, NO2), react quantitatively with (bc)Pd(eta2-O2) (bc = bathocuproine) in dichloromethane at room temperature to form the corresponding palladium(0)-alkene complexes. Mechanistic studies indicate that ligand substitution proceeds through an associative mechanism, and the electronic characteristics of the reactions are consistent with an "oxidatively induced" reductive elimination pathway.  相似文献   

15.
16.
17.
18.
19.
DFT methods were used to elucidate features of coordination environment of Pd(II) that could enable Ar-F reductive elimination as an elementary C-F bond-forming reaction potentially amenable to integration into catalytic cycles for synthesis of organofluorine compounds with benign stoichiometric sources of F(-). Three-coordinate T-shaped geometry of Pd(II)Ar(F)L (L = NHC, PR(3)) was shown to offer kinetics and thermodynamics of Ar-F elimination largely compatible with synthetic applications, whereas coordination of strong fourth ligands to Pd or association of hydrogen bond donors with F each caused pronounced stabilization of Pd(II) reactant and increased activation barrier beyond the practical range. Decreasing donor ability of L promotes elimination kinetics via increasing driving force and para-substituents on Ar exert a sizable SNAr-type TS effect. Synthesis and characterization of the novel [Pd(C(6)H(4)-4-NO(2))ArL(mu-F)](2) (L = P(o-Tolyl)(3), 17; P(t-Bu)(3), 18) revealed stability of the fluoride-bridged dimer forms of the requisite Pd(II)Ar(F)L as the key remaining obstacle to Ar-F reductive elimination in practice. Interligand steric repulsion with P(t-Bu)(3) served to destabilize dimer 18 by 20 kcal/mol, estimated with DFT relative to PMe(3) analog, yet was insufficient to enable formation of greater than trace quantities of Ar-F; C-H activation of P(t-Bu)(3) followed by isobutylene elimination was the major degradation pathway of 18 while Ar/F- scrambling and Ar-Ar reductive elimination dominated thermal decomposition of 17. However, use of Buchwald's L = P(C(6)H(4)-2-Trip)(t-Bu)(2) provided the additional steric pressure on the [PdArL(mu-F)](2) core needed to enable formation of aryl-fluoride net reductive elimination product in quantifiable yields (10%) in reactions with both 17 and 18 at 60 degrees over 22 h.  相似文献   

20.
The platinum(IV) complex trans-(dmpe)Pt(IV)(Ar)2I2 (2, dmpe = 1,2-dimethylphosphinoethane, Ar = 4-FC6H4) rapidly reacts, upon moderate heating in solution under ambient light, via two distinct pathways: isomerization to the corresponding cis-isomer (3) and Ar-I reductive elimination to give (dmpe)Pt(II)(Ar)I (4). Complex 3 undergoes, upon prolonged heating at high temperatures, an exclusive Ar-Ar reductive elimination reaction to give (dmpe)Pt(II)I2. Experimental and DFT studies showed that the 2-to-3 isomerization proceeds via three pathways: photochemical or thermal phosphine chelate opening and a mechanism involving cleavage of the Pt-I bond. The isomerization reaction is significantly slowed down but not stopped in the absence of light or in the presence of an excess of tetra-n-butylammonium iodide. On the other hand, the Ar-I reductive elimination from 2 proceeds via the Pt(delta+)-I(delta-) ion pairlike transition state. Use of the rigid dmpe analogue 1,2-dimethylphosphinobenzene (dmpbz) as the ligand shuts down the chelate ring-opening isomerization pathway and enables faster Ar-I reductive elimination thus making the latter reaction the major reaction route for the dmpbz supported trans-diiodo Pt(IV) complex 8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号