首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We introduce the notions of a band category and of a weakly orthodox category over a band. Our focus is to describe a class of weakly $B$ -orthodox semigroups, where $B$ denotes a band of idempotents. In particular, we investigate orthodox semigroups, by using orthodox groupoids. Weakly $B$ -orthodox semigroups are analogues of orthodox semigroups, where the relations $\widetilde{\mathcal {R}}_B$ and $\widetilde{\mathcal {L}}_B$ play the role that ${\mathcal {R}}$ and $\mathcal {L}$ take in the regular case. We show that the category of weakly $B$ -orthodox semigroups and admissible morphisms is equivalent to the category of weakly orthodox categories over bands and orthodox functors. The same class of weakly $B$ -orthodox semigroups was studied in an earlier article by Gould and the author using generalised categories. Our approach here is more akin to that of Nambooripad. The significant difference in strategy is that it is more convenient to consider categories equipped with pre-orders, rather than with partial orders.  相似文献   

2.
We study the decomposition of central simple algebras of exponent 2 into tensor products of quaternion algebras. We consider in particular decompositions in which one of the quaternion algebras contains a given quadratic extension. Let $B$ be a biquaternion algebra over $F(\sqrt{a})$ with trivial corestriction. A degree 3 cohomological invariant is defined and we show that it determines whether $B$ has a descent to $F$ . This invariant is used to give examples of indecomposable algebras of degree $8$ and exponent 2 over a field of 2-cohomological dimension 3 and over a field $\mathbb M(t)$ where the $u$ -invariant of $\mathbb M$ is $8$ and $t$ is an indeterminate. The construction of these indecomposable algebras uses Chow group computations provided by Merkurjev in “Appendix”.  相似文献   

3.
Let $(B,\mathcal{M }_B)$ be a noetherian regular local ring of dimension $2$ with residue field $B/\mathcal{M }_B$ of characteristic $p>0$ . Assume that $B$ is endowed with an action of a finite cyclic group $H$ whose order is divisible by $p$ . Associated with a resolution of singularities of $\mathrm{Spec}B^H$ is a resolution graph $G$ and an intersection matrix $N$ . We prove in this article three structural properties of wild quotient singularities, which suggest that in general, one should expect when $H= \mathbb{Z }/p\mathbb{Z }$ that the graph $G$ is a tree, that the Smith group $\mathbb{Z }^n/\mathrm{Im}(N)$ is killed by $p$ , and that the fundamental cycle $Z$ has self-intersection $|Z^2|\le p$ . We undertake a combinatorial study of intersection matrices $N$ with a view towards the explicit determination of the invariants $\mathbb{Z }^n/\mathrm{Im}(N)$ and $Z$ . We also exhibit explicitly the resolution graphs of an infinite set of wild $\mathbb{Z }/2\mathbb{Z }$ -singularities, using some results on elliptic curves with potentially good ordinary reduction which could be of independent interest.  相似文献   

4.
Applying the boundedness on weighted Lebesgue spaces of the maximal singular integral operator S * related to the Carleson?CHunt theorem on almost everywhere convergence, we study the boundedness and compactness of pseudodifferential operators a(x, D) with non-regular symbols in ${L^\infty(\mathbb{R}, V(\mathbb{R})), PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ and ${\Lambda_\gamma(\mathbb{R}, V_d(\mathbb{R}))}$ on the weighted Lebesgue spaces ${L^p(\mathbb{R},w)}$ , with 1?< p <? ?? and ${w\in A_p(\mathbb{R})}$ . The Banach algebras ${L^\infty(\mathbb{R}, V(\mathbb{R}))}$ and ${PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ consist, respectively, of all bounded measurable or piecewise continuous ${V(\mathbb{R})}$ -valued functions on ${\mathbb{R}}$ where ${V(\mathbb{R})}$ is the Banach algebra of all functions on ${\mathbb{R}}$ of bounded total variation, and the Banach algebra ${\Lambda_\gamma(\mathbb{R}, V_d(\mathbb{R}))}$ consists of all Lipschitz ${V_d(\mathbb{R})}$ -valued functions of exponent ${\gamma \in (0,1]}$ on ${\mathbb{R}}$ where ${V_d(\mathbb{R})}$ is the Banach algebra of all functions on ${\mathbb{R}}$ of bounded variation on dyadic shells. Finally, for the Banach algebra ${\mathfrak{A}_{p,w}}$ generated by all pseudodifferential operators a(x, D) with symbols ${a(x, \lambda) \in PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ on the space ${L^p(\mathbb{R}, w)}$ , we construct a non-commutative Fredholm symbol calculus and give a Fredholm criterion for the operators ${A \in \mathfrak{A}_{p,w}}$ .  相似文献   

5.
In this paper we construct the matrix subalgebras ${L_{r,s}(\mathbb{R})}$ of the real matrix algebra ${M_{2^{r+s}} (\mathbb{R})}$ when 2 ≤ r + s ≤ 3 and we show that each ${L_{r,s}(\mathbb{R})}$ is isomorphic to the real Clifford algebra ${\mathcal{C} \ell_{r,s}}$ . In particular, we prove that the algebras ${L_{r,s}(\mathbb{R})}$ can be induced from ${L_{0,n}(\mathbb{R})}$ when 2 ≤ rsn ≤ 3 by deforming vector generators of ${L_{0,n}(\mathbb{R})}$ to multiply the specific diagonal matrices. Also, we construct two subalgebras ${T_4(\mathbb{C})}$ and ${T_2(\mathbb{H})}$ of matrix algebras ${M_4(\mathbb{C})}$ and ${M_2(\mathbb{H})}$ , respectively, which are both isomorphic to the Clifford algebra ${\mathcal{C} \ell_{0,3}}$ , and apply them to obtain the properties related to the Clifford group Γ0,3.  相似文献   

6.
7.
8.
Let $C$ be a smooth convex closed plane curve. The $C$ -ovals $C(R,u,v)$ are formed by expanding by a factor  $R$ , then translating by  $(u,v)$ . The number of vertices $V(R,u,v)$ of the convex hull of the integer points within or on  $C(R,u,v)$ has order  $R^{2/3}$ (Balog and Bárány) and has average size $BR^{2/3}$ as $R$ varies (Balog and Deshouillers). We find the space average of  $V(R,u,v)$ over vectors  $(u,v)$ to be  $BR^{2/3}$ with an explicit coefficient  $B$ , and show that the average over  $R$ has the same  $B$ . The proof involves counting edges and finding the domain $D(q,a)$ of an integer vector, the set of  $(u,v)$ for which the convex hull has a directed edge parallel to  $(q,a)$ . The resulting sum over bases of the integer lattice is approximated by a triple integral.  相似文献   

9.
Let ${\mathcal{A}_{\lambda}^2(\mathbb{B}^n)}$ denote the standard weighted Bergman space over the unit ball ${\mathbb{B}^n}$ in ${\mathbb{C}^n}$ . New classes of commutative Banach algebras ${\mathcal{T}(\lambda)}$ which are generated by Toeplitz operators on ${\mathcal{A}_{\lambda}^2(\mathbb{B}^n)}$ have been recently discovered in Vasilevski (Integr Equ Oper Theory 66(1):141?C152, 2010). These algebras are induced by the action of the quasi-elliptic group of biholomorphisms of ${\mathbb{B}^n}$ . In the present paper we analyze in detail the internal structure of such an algebra in the lowest dimensional case n?=?2. We explicitly describe the maximal ideal space and the Gelfand map of ${\mathcal{T}(\lambda)}$ . Since ${\mathcal{T}(\lambda)}$ is not invariant under the *-operation of ${\mathcal{L}(\mathcal{A}_{\lambda}^2(\mathbb{B}^n))}$ its inverse closedness is not obvious and is proved. We remark that the algebra ${\mathcal{T}(\lambda)}$ is not semi-simple and we derive its radical. Several applications of our results are given and, in particular, we conclude that the essential spectrum of elements in ${\mathcal{T}(\lambda)}$ is always connected.  相似文献   

10.
In this paper, we prove that every lax generalized Veronesean embedding of the Hermitian unital ${\mathcal{U}}$ of ${\mathsf{PG}(2,\mathbb{L}), \mathbb{L}}$ a quadratic extension of the field ${\mathbb{K}}$ and ${|\mathbb{K}| \geq 3}$ , in a ${\mathsf{PG}(d,\mathbb{F})}$ , with ${\mathbb{F}}$ any field and d ≥ 7, such that disjoint blocks span disjoint subspaces, is the standard Veronesean embedding in a subgeometry ${\mathsf{PG}(7,\mathbb{K}^{\prime})}$ of ${\mathsf{PG}(7,\mathbb{F})}$ (and d = 7) or it consists of the projection from a point ${p \in \mathcal{U}}$ of ${\mathcal{U}{\setminus} \{p\}}$ from a subgeometry ${\mathsf{PG}(7,\mathbb{K}^{\prime})}$ of ${\mathsf{PG}(7,\mathbb{F})}$ into a hyperplane ${\mathsf{PG}(6,\mathbb{K}^{\prime})}$ . In order to do so, when ${|\mathbb{K}| >3 }$ we strongly use the linear representation of the affine part of ${\mathcal{U}}$ (the line at infinity being secant) as the affine part of the generalized quadrangle ${\mathsf{Q}(4,\mathbb{K})}$ (the solid at infinity being non-singular); when ${|\mathbb{K}| =3}$ , we use the connection of ${\mathcal{U}}$ with the generalized hexagon of order 2.  相似文献   

11.
Let $\mathbb{K }$ be a field of characteristic zero. We describe an algorithm which requires a homogeneous polynomial $F$ of degree three in $\mathbb{K }[x_{0},x_1,x_{2},x_{3}]$ and a zero ${\mathbf{a }}$ of $F$ in $\mathbb{P }^{3}_{\mathbb{K }}$ and ensures a linear Pfaffian representation of $\text{ V}(F)$ with entries in $\mathbb{K }[x_{0},x_{1},x_{2},x_{3}]$ , under mild assumptions on $F$ and ${\mathbf{a }}$ . We use this result to give an explicit construction of (and to prove the existence of) a linear Pfaffian representation of $\text{ V}(F)$ , with entries in $\mathbb{K }^{\prime }[x_{0},x_{1},x_{2},x_{3}]$ , being $\mathbb{K }^{\prime }$ an algebraic extension of $\mathbb{K }$ of degree at most six. An explicit example of such a construction is given.  相似文献   

12.
In this paper, we show that the extended modular group ${\hat{\Gamma}}$ acts on ${\hat{\mathbb{Q}}}$ transitively and imprimitively. Then the number of orbits of ${\hat{\Gamma} _{0}(N)}$ on ${\hat{\mathbb{Q}}}$ is calculated and compared with the number of orbits of ${\Gamma _{0}(N)}$ on ${\hat{\mathbb{Q}}}$ . Especially, we obtain the graphs ${\hat{G}_{u, N}}$ of ${\hat{\Gamma}_{0}(N)}$ on ${\hat{\mathbb{Q}}}$ , for each ${N\in\mathbb{N}}$ and each unit ${u \in U_{N} }$ , then we determine the suborbital graph ${\hat{F}_{u,N}}$ . We also give the edge conditions in ${\hat{G}_{u, N}}$ and the necessary and sufficient conditions for a circuit to be triangle in ${\hat{F}_{u, N}.}$   相似文献   

13.
In classical linear algebra, extending the ring of scalars of a free module gives rise to a new free module containing an isomorphic copy of the former and satisfying a certain universal property. Also, given two free modules on the same ring of scalars and a morphism between them, enlarging the ring of scalars results in obtaining a new morphism having the nice property that it coincides with the initial map on the isomorphic copy of the initial free module in the new one. We investigate these problems in the category of free ${\mathcal{A}}$ -modules, where ${\mathcal{A}}$ is an ${\mathbb{R}}$ -algebra sheaf. Complexification of free ${\mathcal{A}}$ -modules, which is defined to be the process of obtaining new free ${\mathcal{A}}$ -modules by enlarging the ${\mathbb{R}}$ -algebra sheaf ${\mathcal{A}}$ to a ${\mathbb{C}}$ -algebra sheaf, denoted ${\mathcal{A}_\mathbb{C}}$ , is an important particular case (see Proposition 2.1, Proposition 3.1). Attention, on the one hand, is drawn on the sub- ${_{\mathbb{R}}\mathcal{A}}$ -sheaf of almost complex structures on the sheaf ${{_\mathbb{R}}\mathcal{A}^{2n}}$ , the underlying ${\mathbb{R}}$ -algebra sheaf of a ${\mathbb{C}}$ -algebra sheaf ${\mathcal{A}}$ , and on the other hand, on the complexification of the functor ${\mathcal{H}om_\mathcal {A}}$ , with ${\mathcal{A}}$ an ${\mathbb{R}}$ -algebra sheaf.  相似文献   

14.
In this paper we describe the actions of the operator $S_\mathbb{D }$ or its adjoint $S_\mathbb{D }^*$ on the poly-Bergman spaces of the unit disk $\mathbb{D }.$ Let $k$ and $j$ be positive integers. We prove that $(S_\mathbb{D })^{j}$ is an isometric isomorphism between the true poly-Bergman subspace $\mathcal{A }_{(k)}^2(\mathbb{D })\ominus N_{(k),j}$ onto the true poly-Bergman space $\mathcal{A }_{(j+k)}^2(\mathbb{D }),$ where the linear space $N_{(k),j}$ have finite dimension $j.$ The action of $(S_\mathbb{D })^{j-1}$ on the canonical Hilbert base for the Bergman subspace $\mathcal{A }^2(\mathbb{D })\ominus \mathcal{P }_{j-1},$ gives a Hilbert base $\{ \phi _{ j , k } \}_{ k }$ for $\mathcal{A }_{(j)}^2(\mathbb{D }).$ It is shown that $\{ \phi _{ j , k } \}_{ j, k }$ is a Hilbert base for $L^2(\mathbb{D },d A)$ such that whenever $j$ and $k$ remain constant we obtain a Hilbert base for the true poly-Bergman space $\mathcal{A }_{(j)}^2(\mathbb{D })$ and $\mathcal{A }_{(-k)}^2(\mathbb{D }),$ respectively. The functions $\phi _{ j , k }$ are polynomials in $z$ and $\overline{z}$ and are explicitly given in terms of the $(2,1)$ -hypergeometric polynomials. We prove explicit representations for the true poly-Bergman kernels and the Koshelev representation for the poly-Bergman kernels of $\mathbb{D }.$ The action of $S_\Pi $ on the true poly-Bergman spaces of the upper half-plane $\Pi $ allows one to introduce Hilbert bases for the true poly-Bergman spaces, and to give explicit representations of the true poly-Bergman and poly-Bergman kernels.  相似文献   

15.
We show a $2$ -nilpotent section conjecture over $\mathbb{R }$ : for a geometrically connected curve $X$ over $\mathbb{R }$ such that each irreducible component of its normalization has $\mathbb{R }$ -points, $\pi _0(X(\mathbb{R }))$ is determined by the maximal $2$ -nilpotent quotient of the fundamental group with its Galois action, as the kernel of an obstruction of Jordan Ellenberg. This implies that for $X$ smooth and proper, $X(\mathbb{R })^{\pm }$ is determined by the maximal $2$ -nilpotent quotient of $\mathrm{Gal }(\mathbb{C }(X))$ with its $\mathrm{Gal }(\mathbb{R })$ action, where $X(\mathbb{R })^{\pm }$ denotes the set of real points equipped with a real tangent direction, showing a $2$ -nilpotent birational real section conjecture.  相似文献   

16.
Let ${\mathcal{P}}$ be a nonparametric probability model consisting of smooth probability densities and let ${\hat{p}_{n}}$ be the corresponding maximum likelihood estimator based on n independent observations each distributed according to the law ${\mathbb{P}}$ . With $\hat{\mathbb{P}}_{n}$ denoting the measure induced by the density ${\hat{p}_{n}}$ , define the stochastic process ${\hat{\nu}}_{n}: f\longmapsto \sqrt{n} \int fd({\hat{\mathbb{P}}}_{n} -\mathbb{P})$ where f ranges over some function class ${\mathcal{F}}$ . We give a general condition for Donsker classes ${\mathcal{F}}$ implying that the stochastic process $\hat{\nu}_{n}$ is asymptotically equivalent to the empirical process in the space ${\ell ^{\infty }(\mathcal{F})}$ of bounded functions on ${ \mathcal{F}}$ . This implies in particular that $\hat{\nu}_{n}$ converges in law in ${\ell ^{\infty }(\mathcal{F})}$ to a mean zero Gaussian process. We verify the general condition for a large family of Donsker classes ${\mathcal{ F}}$ . We give a number of applications: convergence of the probability measure ${\hat{\mathbb{P}}_{n}}$ to ${\mathbb{P}}$ at rate ${\sqrt{n}}$ in certain metrics metrizing the topology of weak(-star) convergence; a unified treatment of convergence rates of the MLE in a continuous scale of Sobolev-norms; ${\sqrt{n}}$ -efficient estimation of nonlinear functionals defined on ${\mathcal{P}}$ ; limit theorems at rate ${\sqrt{n}}$ for the maximum likelihood estimator of the convolution product ${\mathbb{P\ast P}}$ .  相似文献   

17.
18.
We provide an example of a discontinuous involutory additive function ${a: \mathbb{R}\to \mathbb{R}}$ such that ${a(H) \setminus H \ne \emptyset}$ for every Hamel basis ${H \subset \mathbb{R}}$ and show that, in fact, the set of all such functions is dense in the topological vector space of all additive functions from ${\mathbb{R}}$ to ${\mathbb{R}}$ with the Tychonoff topology induced by ${\mathbb{R}^{\mathbb{R}}}$ .  相似文献   

19.
We prove a new local inequality for divisors on surfaces and utilize it to compute α-invariants of singular del Pezzo surfaces, which implies that del Pezzo surfaces of degree one whose singular points are of type $\mathbb{A}_{1}$ , $\mathbb{A}_{2}$ , $\mathbb{A}_{3}$ , $\mathbb{A}_{4}$ , $\mathbb{A}_{5}$ , or $\mathbb{A}_{6}$ are Kähler-Einstein.  相似文献   

20.
Suppose that n is even. Let ${\mathbb{F}_2}$ denote the two-element field and ${\mathbb{Z}}$ the set of integers. Bent functions can be defined as ± 1-valued functions on ${\mathbb{F}_2^n}$ with ± 1-valued Fourier transform. More generally we call a mapping f on ${\mathbb{F}_2^n}$ a ${\mathbb{Z}}$ -bent function if both f and its Fourier transform ${\widehat{f}}$ are integer-valued. ${\mathbb{Z}}$ -bent functions f are separated into different levels, depending on the size of the maximal absolute value attained by f and ${\widehat{f}}$ . It is shown how ${\mathbb{Z}}$ -bent functions of lower level can be built up recursively by gluing together ${\mathbb{Z}}$ -bent functions of higher level. This recursion comes down at level zero, containing the usual bent functions. In the present paper we start to study bent functions in the framework of ${\mathbb{Z}}$ -bent functions and give some guidelines for further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号