首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel nanocrystalline TiO2 (nano-TiO2) and Nafion composite film modified glassy carbon electrode has been developed for the determination of nitric oxide (NO) radical in an aqueous solution. This modified electrode can be employed as a NO sensor with a low detection limit, fast response, high sensitivity and selectivity. Two apparent anodic peaks were observed at 0.67 and 0.95 V at the nano-TiO2 modified glassy carbon electrode by differential pulse voltammetry (DPV). After further modification with a thin film of Nafion, which was capable of preventing some anionic interference such as nitrite and ascorbic acid, only one peak appeared and the peak current enhanced greatly. The chronocoulometric experimental results showed NO was oxidized by one-electron transfer reaction at the composite film modified electrode. The amperometric responses increased linearly with the concentrations of NO ranging from 3.6×10−7 mol/L to 5.4×10−5 mol/L. The detection limit was estimated to be 5.4×10−8 mol/L. In this sensor system, the modification film provides complete selectivity for NO over nitrite anions (NO2).  相似文献   

2.
A mixed-valence cluster of cobalt(II)hexacyanoferrate possesses an electron transfer property and is suitable for the development of an effective hydrogen peroxide detection scheme. The characteristics of cobalt(II)hexacyanoferrate have been studied using both elemental analysis and infrared spectra, confirming the structure is Co[FeII(CN)6]. The cobalt(II)hexacyanoferrate-modified electrode exhibits a rapid response (t95% - 6.5 s) to the injection of 5.0 × 10−5 M hydrogen peroxide. The linearity of the response is up to 1.1 × 10−3 M (correlation coefficients is 0.999). The sensitivity of this modified electrode is 11.8 μA/mM-mm2. The detection limit of cobalt(II)hexacyanoferrate-modified electrode to hydrogen peroxide is 6.25 × 10−8 M. The current chemical sensor modified with Co[FeII(CN)6] has better sensitivity than previous ones. The modified glassy carbon electrode shows no interference from ascorbic acid, uric acid, acetaminophen, 1,4-dihydroxyquinone, dopamine at the 2.0 × 10−4 M level and polyamines at 5.0 × 10−5 M level.  相似文献   

3.
A new electrode was developed by one-step potentiostatic electrodeposition (at ?2.0 V for 20 s) of Au/SiO2 nanoparticles on a glassy carbon electrode. The resulting electrode (nano-Au/SiO2/GCE) was characterized by scanning electronic microscopy, X-ray photoelectron spectroscopy and electrochemical techniques. The electrochemical behavior of dihydronicotinamide adenine dinucleotide (NADH) at the nano-Au/SiO2/GCE were thoroughly investigated. Compared to the unmodified electrode, the overpotential decreased by about 300 mV, and the current response significantly increased. These changes indicated that the modified electrode showed excellent catalytic activity in the oxidation of NADH. A linear relationship was obtained in the NADH concentration range from 1.0?×?10?6 to 1.0?×?10?4 mol?L?1. In addition, amperometric sensing of ethanol at the nano-Au/SiO2/GCE in combination with alcohol dehydrogenase and nicotinamide adenine dinucleotide was successfully demonstrated. A wide linear response was also found for ethanol in the range from 5.0?×?10?5 to 1.0?×?10?3 mol?L?1 and 1.0?×?10?3 to 1.0?×?10?2 mol?L?1, respectively. The method was successfully applied to determine ethanol in beer and biological samples.  相似文献   

4.
A sensitive and selective electrochemical sensor based on molecularly imprinted polymers (MIPs) was developed for caffeine (CAF) recognition and detection. The sensor was constructed through the following steps: multiwalled carbon nanotubes and gold nanoparticles were first modified onto the glassy carbon electrode surface by potentiostatic deposition method successively. Subsequently, o-aminothiophenol (ATP) was assembled on the surface of the above electrode through Au–S bond before electropolymerization. During the assembled and electropolymerization processes, CAF was embedded into the poly(o-aminothiophenol) film through hydrogen bonding interaction between CAF and ATP, forming an MIP electrochemical sensor. The morphologies and properties of the sensor were characterized by scanning electron microscopy, cyclic voltammetry, and differential pulse voltammetry. The recognition and determination of the sensor were observed by measuring the changes of amperometric response of the oxidation-reduction probe, [Fe(CN)6]3?/[Fe(CN)6]4?, on modified electrode. The results demonstrated that the prepared sensor had excellent selectivity and high sensitivity for CAF, and the linear range was 5.0?×?10?10?~?1.6?×?10?7?mol?L?1 with a detection limit of 9.0?×?10?11?mol?L?1 (S/N?=?3). The sensor was also successfully employed to detect CAF in tea samples.  相似文献   

5.
Deposited cobalt microparticales (Co-MPs) film onto the platinum disk electrode has been successfully used as a new amperometric sensor for the determination of ascorbic acid (AA). AA is detected by surface catalyzed oxidation involving cobalt(III) oxyhydroxides in alkaline solution. The Co-MPs/Pt electrode exhibits a high electrocatalytic activity toward the AA oxidation. The diffusion coefficient of AA (6.09 × 105 cm2/s) and the catalytic rate constant (k cat = 6.27 × 103 M–1s–1) have been determined using electrochemical approaches. The amperometric response of the modified electrode is linear against the AA concentration in the range (0.01?0.48 mM). The sensor displays the best activity with a high response signal, a good sensitivity of 74.3 μA/mM, a low detection limit of 2.5 μM (signal/noise = 3) and a fast response time (<3 s). Moreover, the reproducibility, selectivity and applicability of this biosensor are satisfactorily evaluated.  相似文献   

6.
Cobalt hydroxide film modified electrode was prepared by depositing cobalt hydroxide on glassy carbon electrode (GCE) surface in an alkaline aqueous solution and then characterized by cyclic voltammetry. The electrochemical behavior of resorcin on the film modified electrode was investigated. The results show that cobalt hydroxide films in alkaline solutions have good electrocatalytical activity towards the oxidation of resorcin. The recovery of resorcin from sample ranged from 95.2 to 103.4% and the oxidation peak currents were directly proportional to the resorcin concentration from 5.0 × 10−6 to 1.05 × 10−4 M with correlation coefficient of 0.9986. A detection limit of 1.0 × 10−7 M for resorcin was estimated. Various factors affecting the electrocatalytical activity of cobalt hydroxide film were investigated in detail. Real water samples were analyzed and satisfactory results were obtained.  相似文献   

7.
A glassy carbon electrode (GCE) was modified with nickel(II) hydroxide nanoparticles and a film of molybdenum sulfide. The nanocomposite was prepared by two-step electrodeposition. Scanning electron microscopy reveals that the nanoparticles are uniformly deposited on the film. Cyclic voltammetry and chronoamperometry indicate that this modified GCE displays a remarkable electrocatalytic activity towards nonenzymatic oxidation of glucose. Response is linear in the 10–1,300 μM concentration range (R 2 ?=?0.9987), the detection limit is very low (5.8 μM), response is rapid (< 2 s), and selectivity over ascorbic acid, dopamine, uric acid, fructose and galactose is very good.
Figure
An efficient nonenzymatic glucose sensor based on Ni(OH)2/MoSx nanocomposite modified glassy carbon electrode has been fabricated via a two-step electrodeposition approach. The resulting nonenzymatic sensor exhibits excellent properties toward glucose detection, such as low detection limit, fast response and noticeable selectivity.  相似文献   

8.
A pencil graphite electrode (PGE) electrodeposited by a polypyrrole conducting polymer doped with tartrazine (termed as PGE/PPy/Tar) was prepared and used as a zinc (II) solid-state ion-selective electrode. For the preparation of the zinc sensor electrode, electrodeposition of a polypyrrole nanofilm was carried out potentiostatically (E app?=?0.75 V vs SCE) in a solution containing 0.010 M pyrrole and 0.001 M tartrazine trisodium salt. A pencil graphite and Pt wire were used as working and auxiliary electrodes, respectively. The introduced electrode in the current paper can be fabricated simply and was found to possess high selectivity, exhibited wide working concentration range, sufficiently rapid response, potential stability, and very good sensitivity to Zn (II) ion. The sensor electrode showed a linear Nernstian response over the range of 1.0?×?10?5 to 1.0?×?10?1 M with a slope of 28.23 mV per decade change in zinc ion concentration. A detection limit of 8.0?×?10?6 M was obtained. The optimum pH working of the electrode was found to be 5.0.  相似文献   

9.
The direct electron transfer of glucose oxidase (GOx) was achieved based on the immobilization of CdSe@CdS quantum dots on glassy carbon electrode by multi-wall carbon nanotubes (MWNTs)-chitosan (Chit) film. The immobilized GOx displayed a pair of well-defined and reversible redox peaks with a formal potential (E θ’) of ?0.459 V (versus Ag/AgCl) in 0.1 M pH 7.0 phosphate buffer solution. The apparent heterogeneous electron transfer rate constants (k s) of GOx confined in MWNTs-Chit/CdSe@CdS membrane were evaluated as 1.56 s?1 according to Laviron's equation. The surface concentration (Γ*) of the electroactive GOx in the MWNTs-Chit film was estimated to be (6.52?±?0.01)?×?10?11?mol?cm?2. Meanwhile, the catalytic ability of GOx toward the oxidation of glucose was studied. Its apparent Michaelis–Menten constant for glucose was 0.46?±?0.01 mM, showing a good affinity. The linear range for glucose determination was from 1.6?×?10?4 to 5.6?×?10?3?M with a relatively high sensitivity of 31.13?±?0.02 μA?mM?1?cm?2 and a detection limit of 2.5?×?10?5?M (S/N=3).  相似文献   

10.
We have prepared a glassy carbon electrode modified with poly-2,6-pyridinedicarboxylic acid and with magnetic Fe3O4 nanoparticles. This modification enhances the effective surface area and the electrocatalytic oxidation of nicotinamide adenine dinucleotide (NADH) in addition to providing positively charged groups for electrostatic assembly of the phosphate group of NADH. The modified electrode responds linearly to NADH in the range from 5?×?10?8 to 2.5?×?10?5?M and gives a lower detection limit of 1?×?10?8?M. It displays satisfactory selectivity and reproducibility. The sensor was applied to rapid screening of plant extracts for their antioxidant properties.
Figure
Poly-2,6-pyridinedicarboxylic acid (PDC) was fabricated by electropolymerizing 2,6-pyridinedicarboxylic acid with cyclic voltammetry (CV) on the glassy carbon electrode (GCE) surface. The magnetic Fe3O4 nanoparticles treated with aminopropyltriethoxysilane (APTS) modified on the PDC/GCE to form APTS-Fe3O4/PDC composite film. The APTS-Fe3O4/PDC film had enhanced the effective electrode surface area and provided positively charged groups for electrostatic assembly of phosphate group of NADH.  相似文献   

11.
The hydroxyl radical (?OH) plays important roles in environment and health problems. However, the short life time and low concentrations of ?OH limited its detection. In this work, a simple method has been successfully performed for the sensitive detection of hydroxyl radical based on an activated glassy carbon electrode (AGCE).4-hydroxybenzoic acid (4-HBA) was used as a trapping agent for ?OH radicals, leading to the production of electroactive 3,4-dihydroxybenzoic acid (3,4-DHBA). Different procedures including polarisation and cyclic voltammetry in acid or base solutions have been used to activate the glassy carbon electrodes. The electrochemical behaviours of 3,4-DHBA on these activated electrodes were studied and compared. Experimental results showed that the glassy carbon electrode polarised in H2SO4 (AGCE-P/H2SO4) has the greatest sensitivity and reproducibility to 3,4-DHBA. 3,4-DHBA performed a linear relationship from 1.0 × 10?7 to 1.0 × 10?4 M on the AGCE-P/H2SO4. The detection limit was down to 6.2 × 10?8 M. This method has been successfully applied for the detection of hydroxyl radical levels in atmosphere without separation and purification process.  相似文献   

12.
A new PVC-membrane electrode for Co2+ ions based on N,N′-di(thiazol-2-yl)formimidamide (TF) as membrane carrier has been developed. The electrode resulted in Nernstian response (29.5?±?0.4?mV decade?1) for Co2+ ion over a wide concentration range (2.5?×?10?7 ?1.0?×?10?1?M) with a detection limit of 6.1?×?10?8?M. The sensor has a response time of about 10?s, and can be used for at least 2 months without observing any deviation from the Nernstain response. The electrode revealed good selectivity towards cobalt(II) ion over a wide variety of alkali, alkaline earth, transition, and heavy metal ions and could be used in the pH range 2.0–7.0. The electrode was used for determination of Co2+ in real samples.  相似文献   

13.
A sensitive electrochemical method was developed for the determination of doxorubicin at a glassy carbon electrode (GCE) modified with a nano-titania (nano-TiO2)/nafion composite film. Nano-TiO2 was dispersed into nafion to give a homogeneous suspension. After solvent evaporation, a uniform film of nano-TiO2/nafion composite was obtained on the GCE surface. The nano-TiO2/nafion composite film modified GCE exhibited excellent electrochemical behavior toward the reduction of doxorubicin. Compared to the reduction of doxorubicin at the bare GCE, the reduction current of doxorubicin at the nano-TiO2/nafion composite film modified GCE was greatly enhanced. Based on this, a novel voltammetric method was applied to the determination of doxorubicin. The experimental parameters that influence the reduction current of doxorubicin, were optimized. Under optimal conditions, a linear response of doxorubicin was obtained in the range from 5.0?×?10?9 to 2.0?×?10?6 mol L?1 (R?=?0.998) and with a limit of detection (LOD) of 1.0?×?10?9 mol L?1(S/N?=?3). The RSD of the measurement is 4.7%, and the RSD of the inter-electrode is of 5.1% which indicate the reproducibility of this method. The current response decreased only by around 3.8% of its initial response after 2 weeks exposing the electrode in air. The procedure was applied to assay doxorubicin in human plasma samples with the recoveries of 94.9–104.4%.  相似文献   

14.
As a natural chiral selector, bovine serum albumin (BSA) has been used to recognize penicillamine (Pen) enantiomers through electrochemical methods. The recognition and assay rely on the stereoselectivity of BSA embedded in ultrathin Al2O3 sol–gel film coated on the surface of glassy carbon electrode (BSA/GCE). The enantioselective interaction between Pen enantiomers and BSA was monitored by cyclic voltammetry and electrochemical impedance spectroscopy measurements, from which larger response signals were obtained from d-Pen. The factors influencing the performance of the modified biosensor were also investigated. The association constant (K) was calculated to be 1.93?×?104?L?mol?1 for d-Pen and 1.20?×?103?L?mol?1 for l-Pen. A good linear response was exhibited with the concentration of Pen enantiomers by BSA/GCE over the range of 1?×?10?8–1?×?10?1?mol?L?1 with a detection limit of 3.31?×?10?9?mol?L?1.  相似文献   

15.
WANG Yuane  PAN Dawei  LI Xinmin  QIN Wei 《中国化学》2009,27(12):2385-2391
A bismuth/multi‐walled carbon nanotube (Bi/MWNT) composite modified electrode for determination of cobalt by differential pulse adsorptive cathodic stripping voltammetry is described. The electrode is fabricated by potentiostatic pre‐plating bismuth film on an MWNT modified glassy carbon (GC) electrode. The Bi/MWNT composite modified electrode exhibits enhanced sensitivity for cobalt detection as compared with the bare GC, MWNT modified and bismuth film electrodes. Numerous key experimental parameters have been examined for optimum analytical performance of the proposed electrode. With an adsorptive accumulation of the Co(II)‐dimethylglyoxime complex at ?0.8 V for 200 s, the reduction peak current is proportional to the concentration of cobalt in the range of 4.0×10?10?1.0×10?7 mol/L with a lower detection limit of 8.1×10?11 mol/L. The proposed method has been applied successfully to cobalt determination in seawater and lake water samples.  相似文献   

16.
The potential application of ordered mesoporous carbon (OMC)-modified glassy carbon electrode (OMC/GCE) in electrochemistry as a novel electrode material was investigated. X-ray diffraction, transmission electron micrographs, and cyclic voltammetry were used to characterize the structure and electrochemical behaviors of this material. Compared to GC electrode, the peak currents of potassium ferricyanide (K3[Fe(CN)6]) increase and the peak potential separation (ΔE p) decreases at the OMC/GC electrode. These phenomena suggest that OMC-modified GC electrode possesses larger electrode area and faster electron transfer rate, as compared with bare GC electrode. Furthermore, riboflavin was detected using OMC/GC electrode in aqueous solutions. The results showed that, under an optimum condition (pH 7.0), the OMC/GC electrode exhibited excellent response performance to riboflavin in the concentration range of 4.0 × 10−7 to 1.0 × 10−6 M with a high sensitivity of 769 μA mM−1. The detection limit was down to around 2 × 10−8 M. With good stability and reproducibility, the present OMC/GC electrode was applied in the determination of vitamin B2 content in vitamin tablets, and satisfactory results were obtained.  相似文献   

17.
A glassy carbon electrode coated with film of 4-tert-butyl-1-(ethoxycarbonylmethoxy)thiacalix[4]arene is designed for the determination of trace amounts of Ag+. Compared with bare glassy carbon electrode, the modified electrode can greatly improve the measuring sensitivity for Ag+. Under the optimum experimental conditions, the modified electrode in B-R buffer solution (pH 4.5) shows a linear voltammetric response in the range of 5.0 × 10−8–3.0 × 10−6 M with detection limit 1.0 × 10−8 M for Ag+. The high sensitivity, selectivity, and stability of modified electrode also demonstrate its practical application for a simple, rapid and economical determination of Ag+ in water samples.  相似文献   

18.
The NiHCF-PEDOT, CuHCF-PEDOT and MnHCF-PEDOT films were prepared on glassy carbon electrode (GCE) by multiple scan cyclic voltammetry and characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM) techniques. The advantages of these films are demonstrated for selectivity detection of ascorbic acid using cyclic voltammetry and amperometric method. Interestingly, the NiHCF-PEDOT and CuHCF-PEDOT modified electrodes exhibited a wide linear response range (5 × 10−6−3 × 10−4 M, R 2 = 0.9973 and 1.8 × 10−3−1.8 × 10−2 M, R 2 = 0.9924). The electrochemical sensors facilitated the oxidation of AA but not responded to other electroactive biomolecules such as dopamine, uric acid, H2O2, glucose. The difference is MnHCF-PEDOT/GCE that no response to AA. In addition, the NiHCF-PEDOT and CuHCF-PEDOT modified electrodes exhibited a distinct advantage of simple preparation, specificity, stability and reproducibility.  相似文献   

19.
We report on a graphite electrode onto which polypyrrole was electrodeposited and then doped with chromate ion. This electrode can serve as a Cr(VI)-selective solid-state electrode. Electropolymerization of pyrrole was performed potentiostatically at 0.80?V (vs. SCE) using battery graphite as the working electrode in a solution containing 0.10?M of pyrrole and 20?mM of chromate. A platinum wire was used as an auxiliary electrode. The new electrode displays high selectivity, a very wide dynamic range, a sufficiently fast response time and a good shelf lifetime. It shows a linear Nernstian response over 1.0?×?10?6 to 1.0?×?10?1?M concentration range (with a slope of 26.55?±?0.20?mV per log of concentration). The detection limit is 0.5?μM, and the pH optimum is 7.0.
Figure
A highly selective solid state Cr(VI) ion-selective electrode based on polypyrrole conducting polymer was prepared. The introduced Cr(VI) micro sensor electrode exhibited linear response over a wide working concentration range with a high regression coefficient and a near Nernstian slope. The SEM image of PPy/CrO4 thin film shows unevenly distributed nanoparticles.  相似文献   

20.
《Electroanalysis》2006,18(12):1202-1207
A new type of current sensor, Langmuir–Blodgett (LB) film of calixarene on the surface of glassy carbon electrode (GCE) was prepared for determination of mercury by anodic stripping voltammetry (ASV). An anodic stripping peak was obtained at 0.15 V (vs. SCE) by scanning the potential from ?0.6 to +0.6 V. Compared with a bare GCE, the LB film coated electrode greatly improves the sensitivity of measuring mercury ion. The fabricated electrode in a 0.1 M H2SO4+0.01 M HCl solution shows a linear voltammetric response in the range of 0.07–40 μg L?1 and detection limit of 0.04 μg L?1 (ca. 2×10?10 M). The high sensitivity, selectivity, and stability of this LB film modified electrode demonstrates its practical application for a simple, rapid and economical determination of Hg2+ in a water sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号