首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A bio-electrochemical sensor specific for hydrogen peroxide is described. The sensor consists of two membranes—a catalase-collagen membrane and a teflon membrane—an alkaline solution, a platinum cathode and a lead anode. The catalase-collagen membrane is prepared electrochemically, the thickness being 1 μ; the enzyme activity is similar to that of native catalase. The sensor responds to hydrogen peroxide with a response time of only 1–2 min. The calibration curve is quite linear over a concentration range of 0–1.5 mmol l-1 for hydrogen peroxide. The utility of the sensor in continuous usage is discussed.  相似文献   

2.
A new one‐shot optical cyanide ion sensor is proposed for determination of cyanide ions. The sensor was constructed by immobilizing crystal violet (CV) on triacetylcellulose membrane. The sensing mechanism involves reaction between cyanide ions and the immobilized CV at pH = 5.4, which results in a decrease in absorbance of the membrane at 600 nm. The sensor shows sufficient repeatability, reproducibility, operational lifetime of 3 weeks, and a response of less then 10 min under the optimum conditions and response time of 8 min. Cyanide can be determined in the concentration range of 50.0‐800 μg mL‐1 with a detection limit of 5.0 μg mL‐1. Most ions do not interfere with the determination of cyanide ions. The proposed sensor was successfully applied to the determination of cyanide in spiked water samples.  相似文献   

3.
A novel lipophilic anionic dye, N-2,4-dinitro-6-octyloxyphenyl-2′,4′-dinitro-6′-trifluoromethylphenylamine (LAD), was synthesized. On deprotonation at neutral Ph it forms anions and brings about a change in the absorption spectrum in the visible region. This anionic dye was incorporated into a poly(vinyl chloride) matrix membrane with dibenzo-18-crown-6 (DB18C6) or valinomycin, which are K+-selective neutral ionophores. An optical K+ sensor was prepared using the polymeric membrane set 1 mm apart from the tip of a bifurcated optical fibre with a cylindrical plastic support. This sensor could detect a wide range of K+ concentrations (10?6?1 M K+ for the DB18C6-based sensor, 10?8?10?2 M K+ for the valinomycin-based sensor) at Ph 7.0 by measuring the absorbance change at 513 nm. The factors that influence the response sensitivity of the sensor are discussed theoretically.  相似文献   

4.
In this study, all‐solid‐state type potentiometric PVC membrane selective microsensor was developed for Metformin (MET) which is an antidiabetic drug active substance. Metformin‐tetraphenylborate (MET‐TPB) ion‐pair was used as an ionophore in the structure of the sensor membrane. It was determined that the sensor membrane at the ratio of 69 % o‐nitrophenyl octyl ether, 27 % polyvinyl chloride and 4 % MET‐TPB performed the best potentiometric performance. In a wide concentration range (1×10?5–1×10?1 mol/L), the slope, detection limit, response time, pH range, and life‐time of the sensor were determined as 55.9±1.6 mV (R2=0.996), 3.35×10?6 mol/L, 8–10 s, pH: 3–8, and ~10 weeks, respectively. The voltammetric performances of the sensor were also investigated. The prepared microsensor was successfully utilized for the determination of Metformin in a pharmaceutical drug sample by potentiometry and voltammetry. It was observed that the obtained results were in agreement with the results obtained by the UV spectroscopy method at 95 % confidence level.  相似文献   

5.
A specific sensor for a tumor antigen, α-fetoprotein (AFP) can be prepared from a membrane with immobilized antibody and an oxygen probe with a permeable teflon membrane. Anti-AFP antibody is covalently immobilized on a membrane prepared from cellulose triacetate, 1,8-diamino-4-aminomethyloctane and glutaraldehyde. The sensor is applied to enzyme immunoassay based on competitive antigen-antibody reaction with catalase-labelled antigen. After competitive binding of free and catalase-labelled AFP, the sensor is examined for catalase activity by amperometric measurement after addition of hydrogen peroxide. AFP can be determined in the range 10-11–10-8 g ml-1.  相似文献   

6.
A substituted poly(γ-methyl-l-glutamate) membrane is used for chemical immobilization of creatinine deiminase. The permeability of the membrane is controlled by the conditions used for membrane preparation. The creatinine sensor based on the immobilized enzyme membrane with immobilized nitrifying bacteria and an oxygen electrode exhibited greater sensitivity than the sensor previously reported which had a 1,8-diamino-4-amino-methyloctane membrane. The sensor gave a linear response to creatinine over the range 1–10 mg dl?1; responses remained stable for two weeks.  相似文献   

7.
A new chelating resin, Aurin tricarboxylic acid modified silica, was synthesized. The resin behaves as a selective chelating ion exchanger for Cr(III) at a pH 3.8-5.5. A polyvinyl chloride-based membrane electrode of the modified silica has been fabricated and explored as sensor for Cr(III) ions. The membrane works well over the concentration range 7.0 × 10−6 to 1 × 10−1 M of Cr(III) with a Nernstian slope of 19.0 mV per decade of concentration. The response time of the sensor is 10 s and it can be used for a period of 5 months. The performance of the sensor is best in the pH range 3.5-6.5 and it also works well in partially non-aqueous medium. The selectivity coefficient values depicts that the membrane exhibits good selectivity over a number of interfering ions. Moreover, the membrane sensor has been applied to analyse the concentration of chromium in certified steel sample and food materials with greater than 97% accuracy.  相似文献   

8.
An amperometric enzyme electrode for the determination of hypoxanthine in fish meat is described. The hypoxanthine sensor was prepared from xanthine oxidase immobilized by covalent binding to cellulose triacetate and a carbon paste electrode containing hydroxymethylferrocene. The xanthine oxidase membrane was retained behind a dialysis membrane at a carbon paste electrode. The sensor showed a current response to hypoxanthine due to the bioelectrocatalytic oxidation of hypoxanthine, in which hydroxymethyiferrocene served as an electron-transfer mediator. The limit of detection is 6 × 10?7 M, the relative standard deviation is 2.8% (n=28) and the response is linear up to 7 × 10?4 M. The sensor responded rapidly to a low hypoxanthine concentration (7 × 10?4 M), the steady-state current response being achieved in less than 1 min, and was stable for more than 30 days at 5 ° C. Results for tuna samples showed good agreement with the value determined by the conventional method.  相似文献   

9.
A multi-purpose tubular flow-through sensor was constructed with an AgI-based membrane. The membrane was prepared by pressing silver salts (AgI, Ag2S) and powdered Teflon. This membrane was incorporated in the tubular flow-through sensor body. A 2-mm diameter hole was drilled through the center of the tubular sensor and the membrane, thus determining the active sensor volume of about 4 μL. The tubular sensor with reference electrode was placed into a complex flow-injection system and used for the flow-through determination of N-acetyl-L-cysteine, (NAC), in perchloric acid medium, pH = l. Linear dependence was established between the recorded signal height and the concentration of NAC in the injected sample. The recorded change in potential for a decade change in concentration, 62 mV {p (NAC)}–1, in the concentration range from 1 × 10–4 to 1 × 10–1 mol L–1, was based on the formation mechanism of the sparingly soluble deposit between silver and NAC on the surface of the sensitive part of the membrane. Received: 7 July 1997 / Revised: 22 September 1997 / Accepted: 26 September 1997  相似文献   

10.
A fluorescence sensor was fabricated using R-phycoerythrin (R-PE) immobilized on eggshell membrane as the fluorescence probe, and salbutamol was determined based on the decrease in fluorescence intensity of R-phycoerythrin. The scanning electron and fluorescence micrographs showed the microstructure of the eggshell membrane and indicated that the R-PE was successfully immobilized on the eggshell membrane surface. The effects of some experimental parameters on the response of the biosensor were investigated in detail. The fluorescence sensor has a linear response to salbutamol concentrations ranging from 5.00 to 100 ng mL−1. The detection limit for the salbutamol is 3.50 ng mL−1 (S/N = 3). The reproducibility of fabricating the biosensors using six different membranes was good with a relative standard deviation (RSD) of 3.28%. The fluorescence sensor showed extremely good stability with a shelf life of at least 50 days and reversible response to salbutamol. Some common potential interferents showed little effect on the response of the salbutamol fluorescence sensor. The proposed method was successfully applied to the determination of the salbutamol in urine samples.  相似文献   

11.
The electrolytic sensor described is based on the oxidation of nitrite at a platinum electrode modified with chemisorbed iodine and coated with a thin layer of quaternized poly(4-vinylpyridine), qPVP. The sealed sensor uses an anion-exchange membrane to separate Donnan transport of nitrite across the membrane and controlled potential electrolysis at the Pt/qPVP indicator electrode. The sensor has a linear response to nitrate concentration in aqueous samples over the range 4 × 10?6?2 × 10?3 M nitrite. The detection limit is 2 × 10?6 M nitrite. The sensor is free of interference by nitrate, dissolved oxygen, cations, and many neutral species. Anions that are electroactive at 0.7 V vs. Ag/ AgCl would interfere, but they are uncommon in most samples. Initial tests with lake water samples suggest that this sensor is unaffected by this matrix. The system was also evaluated for monitoring nitrite levels in spiked meat extracts.  相似文献   

12.
An optical sensor membrane is described for the determination of lanthanum(III) ions based on the immobilization of 4-hydroxysalophen on a hydrolyzed triacetylcellulose membrane. 4-Hydroxysalophen is covalently bonded to a transparent hydrolyzed triacetylcellulose film. The sensing membrane in contact with lanthanum ions at pH 4.0 changes color from white-yellow to orange (323 to 433 nm). Under the optimum conditions, the proposed membrane displayed a linear range from 1.0 × 10−6 to 1.0 × 10−2 M La(III) with a limit of detection of 1 × 10−7 M. The response time of the membrane was within 5–6 min depending on the concentration of La(III) ions. The selectivity of the probe towards lanthanum ions was found to be excellent. The sensor was successfully applied to the determination of La(III) in water, industrial waste water, and in NIST-615 (glass matrix) and NIST-3127a (lanthanum solution) samples with satisfactory results.  相似文献   

13.
《Analytical letters》2012,45(15):2591-2605
Abstract

A new PVC membrane electrode for lead ions, based on bis[(1-hydroxy-9,10-anthraquinone)-2-methyl]sulfide as membrane carrier, was prepared. The sensor exhibits a Nernstian response for Pb2+ over a wide concentration range (5.6 × 10?3-4.0 × 10?6 M). It has a response time of about 30 s and can be used for at least 3 months without any divergence in potentials. The proposed membrane sensor revealed good selectivities for Pb2+ over a wide variety of other metal ions. It was used as an indicator electrode in potentiometric titration of lead ion.  相似文献   

14.
《Analytical letters》2012,45(3):299-313
Abstract

An enzymatic sensor was constructed from an oxygen amperometric sensor on whose surface a dialysis membrane containing covalently bonded catalase was set. Immobilization of the enzyme on the dialysis membrane surface was achieved with 2,4-dichloro-6-methoxy-s-triazine, a derivative of cyanuric chloride, which unlike others of its monosubstituted derivatives ensures some advantages. The time of measurement is less than 12 sec, for the kinetic method of the initial slope and one minute for the steady-state method. The sensor responds linearly to hydrogen peroxide in the concentration range 10?3 - 10?5 moles/1. The utilization of this sensor in intermittent and continuous operation in a laboratory enzymatic minireactor is discussed.  相似文献   

15.
The potential use of the bilayer lipid membrane as an electrochemical sensor is discussed through a study of model systems known to cause increased membrane conductance. The limit of detection for amphotericin B, a molecule capable of forming membrane pores, is in the region of 1O-9 M. The current—time profile is discussed in terms of a mechanism which involves micelle formation in the aqueous and lipid phases. Unlike previous experiments, two current maxima with time are observed for valinomycin response (limit of detection 1O-11 M). The first transient signal is attributed to increased membrane permeability caused by a conformational change in valinomycin in the “surface” volume of the bilayer. Selective interactions at membranes and the nature of membrane responses are discussed in terms of analytical parameters.  相似文献   

16.
4,13-Didecyl-1,7,10,16-tetraoxa-4,13-diazacyclooctadecane (kryptofix22DD) has been explored as a neutral ionophore for preparing polyvinyl chloride (PVC)-based membrane sensor selective to lead(II). The optimized membrane incorporating kryptofix22DD as the active material, nitrobenzene as plasticizer and sodium tetraphenylborate as an anion excluder and membrane modifier in PVC (in the weight ratio of 5.0: 63.0: 2.0: 30.0, respectively) was directly coated on the surface of graphite rod. The sensor exhibits a Nernstian slope (29.4 mV/decade) in the concentration range of 1.0 × 10–5 to 1.0 × 10–1 M Pb2+. The detection limit of the sensor is 6.5 × 10–6 M. The proposed sensor has a fast response time (~10 s), a satisfactory reproducibility and relatively long lifetime. The electrode shows high selectivity toward Pb2+ ion in comparison to other common cations. The proposed sensor is suitable for use in aqueous solutions in a wide pH range of 2.0–10.0. It was used as an indicator electrode for the end point detection in the potentiometric titration of Pb2+ ion with ethylenediaminetetraacetic acid (EDTA) and sodium iodide (NaI) solutions. The proposed sensor was successfully applied for the recovery of Pb2+ ions spiked in real water samples.  相似文献   

17.
A novel optical sensor has been proposed for sensitive determination of Cu(II) ion in aqueous solutions. The copper sensing membrane was prepared by incorporating Qsal (2-(2-hydroxyphenyl)-3H-anthra[2,1-d]imidazole-6,11-dione) as ionophore in the plasticized PVC membrane containing tributyl phosphate (TBP) as plasticizer. The membrane responds to Cu(II) ion by changing color reversibly from yellow to dark red in acetate buffer solution at pH 4.0. The proposed sensor displays a linear range of 6.3 × 10?7?1.00 × 10?4 M with a limit of detection of 3.3 × 10?7 M. The response time of the optical sensor was about 3?C5 min, depending on the concentration of Cu(II) ions. The selectivity of the optical sensor to Cu(II) ions in acetate buffer is good. The sensor can readily be regenerated by hydrochloric acid (0.1 M). The optical sensor is fully reversible. The proposed optical sensor was applied to the determination of Cu(II) in environmental water samples.  相似文献   

18.
The complex [TpPh,MeNi(Cl)PzPh,MeH] ( I ) [TpPh,Me=hydrotris(3‐phenyl‐5‐methyl‐pyrazol‐1‐yl)borate; PzPh,MeH=3‐phenyl‐5‐methyl‐pyrazole] has been synthesized and explored as ionophore for the preparation of a poly(vinyl chloride) (PVC) membrane sensor for benzoate anions. The formation constants for the interaction of complex I with different organic/inorganic anions in solution have also been studied by sandwich membrane method. PVC based membranes of I using tridodecylmethylammonium chloride (TDDMACl) as cation discriminator and o‐nitrophenyloctyl ether (o‐NPOE), dibutylphthalate (DBP), benzylacetate (BA) and tributylphosphate (TBP) as plasticizing solvent mediators were prepared and investigated as benzoate selective sensors. The best performance was shown by the membrane with composition (w/w) of I (5): PVC (150): NPOE (345): TDDMACl (0.3). The proposed sensor exhibits significantly enhanced selectivity toward benzoate ions over the concentration range 2.2×10?6–1.0×10?1 M with a lower detection limit of 1.4×10?6 M and a Nernstian slope of 59.2 mVdecade?1 of activity within a pH range of 4.5–8.5. The sensor has a response time of 12 s and can be used for at least 8 weeks without any considerable divergence in their potential response. The membrane sensor of complex I have been checked for reversible and accurate sensing of benzoate levels present in liquid food products.  相似文献   

19.
The 3‐amion‐5‐mercapto‐1,2,4‐triazole cobalt(II) [Co(II)AMETR] was used as a new carrier for preparing polymeric membrane selective sensor which exhibited high affinity for iodide ion. The effects of membrane composition, pH, the influence of lipophilic ion additives and plasticizer on the response characteristics of the sensor were investigated. The sensor showed a near Nernstian slope of ?56.6 mV/decade for I? ion over a wide concentration range from 8.5×10?7 to 1.0×10?1 M with a low detection limit of 5.1×10?7 M. The sensor has a fast response time and could be used over a wide pH range of 2–8. The response mechanism is discussed in view of the AC impedance technique. The sensor was successfully applied to direct determination of iodide content in environmental water samples and mouth wash samples.  相似文献   

20.
A samarium(III) selective potentiometric sensor has been prepared on the basis of polyvinyl chloride (PVC) membranes containing an ion exchanger (zirconium boratophosphate) as an electro-active material. The best performance was exhibited by a membrane having the following composition: zirconium boratophosphate (10%) and poly vinylchloride (90%). This membrane works well over a wide concentration range (from 1 × 10?5 to 1 ? 10?1 M) of Sm(III) ions with a Nernstian slope of 20.2 mV/decade. The response time of the sensor is 15 s, and the membrane can be used for more than six months with good reproducibility. Selectivity coefficients determined by the fixed interference method for a number of mono-, di-, and trivalent cations are reported. The sensor has also been used as an indicator electrode in the potentiometric titrations of samarium (III) ions with EDTA solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号