首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Analytical letters》2012,45(3):589-602
Abstract

The UV‐VIS spectrophotometric methods for the determination of Os(VIII) (as OsO4) and Os(IV) (as OsCl6 2? complex) in their mixtures were developed. Quercetin (Q), a flavonoid compound, was used as a chromogenic reagent. Both direct and derivative spectrophotometry can be employed for the determination of Os(VIII). The calculation of the first‐derivative spectrum of the examined mixture and the use of the signal at 285.1 nm allows reaching a better detection limit (0.01 µg mL?1 Os) as compared with direct spectrophotometry (0.1 µg mL?1 Os). Relative standard deviations of the results are in the range of 0.87%–4.65% and 0.45%–1.15% for direct and derivative mode, respectively. Selective redox reaction of OsO4 with Q under the conditions used (0.05 M HCl, 1×10?4 M Q, 15 min heating at 70°C) makes the basis of its determination in mixtures with the OsCl6 2? complex. Quercetin does not react with the OsCl6 2? complex. The signals of the OsCl6 2? complex can be isolated from the examined mixtures by the calculation of the third‐order derivative spectra and the use of the values at 340.0 nm. The effectiveness of the reduction of OsO4 in chloride solutions has been studied by the developed method.  相似文献   

2.
Thionitrosyl Complexes of Osmium. Crystal Structure of AsPh4[OsCl4(NS)2Cl] The reaction of osmium pentachloride with trithiazyl chloride (NSCl)3 yields the thiazylchloride complex [OsCl4(NSCl)2], from which the thionitrosyl complex AsPh4[OsCl4(NS)2Cl] is obtained by reaction with AsPh4Cl in CH2Cl2. From this, the neutral thionitrosyl complex [OsCl4(NS)2] forms by chloride abstraction with gallium trichloride. The crystal structure of AsPh4[OsCl4(NS)2Cl] was determined and refined with the aid of X-ray diffraction data (R = 0.033, 2161 reflexions). It crystallizes in the monoclinic space group P21/c with four formula units per unit cell. The lattice constants are a = 1735, b = 1058, c = 1578 pm and β 95.64°. In the [OsCl4(NS)2Cl]? ion the osmium is octahedrally coordinated by four Cl atoms and two NS groups in a cis arrangement. The NS groups are essentially linear with the bond lengths Os?N 184 pm and N?S 146 pm. Loosely attached to one of the S atoms there is a Cl atom (S? Cl distance 228 pm); in the crystal it statistically belongs to both S atoms with an occupation probability of one half, and it cannot be decided whether there is a dynamical fluctuation between the S atoms or a static positional disorder. However, according to the i.r. spectrum the dynamical model seems more probable.  相似文献   

3.
(PPh4)2[OsCl3(NO) (SnCl3)2]; Preparation, I.R. Spectrum, and Crystal Structure (P(C6H5)4)2[OsCl3(NO)(SnCl3)2] yields from the reaction of OsCl3(NO) with PPh4-[SnCl3] in dichloro methane forming red crystals. The complex crystallizes monoclinic in the space group C2/c with four formula units per unit cell. The crystal structure was determined by aid of X-ray diffraction data (2261 independent, observed reflexions, R = 4.9%). The cell parameters are a = 1369, b = 1989, c = 2088 pm, β = 99.54°. The structure consists of tetraphenyl phosphonium cations and [OsCl3(NO)(SnCl3)2]2?-anions. In the anion the osmium is coordinated octahedrally by three chlorine atoms (mean bond length r Os? Cl 238 pm), two SnCl3 groups in transposition to each other (r Os? Sn 265 pm) and the N-atom of the covalently bonded nitrosyl ligand (r Os? N 173 pm). The i.r. spectrum of the anion is reported and assigned.  相似文献   

4.
Preparation and Spectroscopic Characterization of the Pure Bondisomers [OsCl5(NCS)]2? and [OsCl5(SCN)]2? The oxidation of [OsCl5I]2? with (SCN)2 in CH2Cl2 yields the bondisomers [OsCl5(NCS)]2? and [OsCl5(SCN)]2?, which are isolated as pure compounds by ion exchange chromatography on DEAE-Cellulose. Only the salts of the N-isomer show significant shifts in the vibrational and electronic spectra caused by polarization of the terminal S depending on the size of the cations and the polarity of the solvents. In the IR and Raman spectra νCN(S), νCS(N) and δNCS are found at higher wave numbers than νCN(N), νCS(S) and δSCN. In the optical spectrum of the red [OsCl5(SCN)]2? the charge-transfer S→Os is nearly constant at 538 nm, but the N→Os transition of the yellow to violet coloured N-isomer shifts from 480 nm in organic solvents or in presence of large alkylammonium cations to 516 nm in aqueous solution and to 544 nm in the solid Cs-salt. The optical electronegativities are calculated to χopt(–SCN) = 2.6 and χopt(–NCS) = 2.6–2.8. According to spinorbit coupling and to lowered symmetry (C4v) the splitted intraconfigurational transitions are observed at 10 K as weak peaks in the regions 600, 1000 and 2000 nm. The O? O transitions are calculated from the vibrational fine structure. The lowest level of both isomers is confirmed by peaks in the electronic raman spectra. With the parameters ζ(OsIV) = 3200 cm?1 and B(? SCN) = 316 cm?1 or B(? NCS) = 288 cm?1 there is a good fit of calculated and experimental data, resulting in the nephelauxetic series: F? > CI? > SCN? > Br? > NCS? > I?.  相似文献   

5.
Separation and Characterization of Chloro-aquo-hydroxo-oxo-osmates(IV) As a result of the acidic hydrolysis of hexachloroosmate(IV), OsCl62?, and/or the careful reduction of osmium tetroxide with iron(II) sulfate in hydrochloric acid products have been obtained which have been separated by column chromatography using diethylaminoethyl cellulose. On the basis of the analytically determined Os:Cl ratios, the ionic charges that could be deduced from the elution behaviour, and the absorption spectra the products have been characterized as the monomers OsCl5(H2O)?, cis-OsCl4(OH)(H2O)?, fac-OsCl3(OH)2(H2O)? and mer-OsCl3(OH)(H2O)2, the O-bridged dimers Cl5Os? O? OsCl54?, cis-(H2O)Cl4Os? O? OsCl4(H2O)2?and fac-(H2O)(OH)Cl3Os? O? OsCl3(OH)(H2O)2? and the hydrogen bridges forming OH-bridged dimers shown in “Inhaltsübersicht”.  相似文献   

6.
The structure of (NH4)4[OS2OCl10] has been determined by X-ray diffraction. The crystals are tetragonal, space group I4/mmm, a = 7.292(1) Å, c = 17.157(3) Å, Z = 2. The binuclear anion has D 4h symmetry; the osmium atom is coordinated to five chlorine atoms and the oxygen atom. The Os-O distances are 1.8242(5) Å; Os-Cleqv, 2.3743(18) Å; Os-Clax, 2.335(3) Å; the Cl1OsCl2 angle is 86.84(4)°. The anion has been established spectrophotometrically to remain structurally unchanged in freshly prepared aqueous and hydrochloric acid solutions. Slow aquation with retention of a binuclear structure occurs with time in 1 and 6 M HCl. At 75 or 90°C, the process is faster with the disrupture of the Os-O-Os bond and the formation [OsCl6]2? ions in 6 M HCl and a mixture of [OsCl6]2? and [Os(H2O)Cl5]? ions in 1 M HCl.  相似文献   

7.
Preparation, Crystal Structure and Normal Coordinate Analysis of Linkage Isomeric Pentachlororhodanoosmates(IV) By treatment of [OsCl5I]2? with (SCN)2 in dichloromethane the linkage isomers [OsCl5(NCS)]2? and [OsCl5(SCN)]2? are formed which have been separated by ion exchange chromatography on diethylaminoethyl cellulose. The X-ray structure determination on single crystals of (Ph4As)2[OsCl5(NCS)] (monoclinic, space group P21/a, a = 18.872(2), b = 11.6024(2), c = 22.786(1), β = 109.057(1)°, Z = 4) and (Ph4As)2[OsCl5(SCN)] (monoclinic, space group P21/a, a = 19.057(2), b = 11.306(2), c = 22.612(1), β = 106.64(2)°, Z = 4) reveals the complete ordering of the complex anions. The thiocyanate group is located above one of the Cl ligands of the equatorial plane with the Os? N? C angle of 166.1° for N bonding and the Os? S? C angle of 109.9° for S bonding. The IR and Raman spectra of both linkage isomers known from literature are assigned by normal coordinate analysis based on the general valence force field using the molecular parameters of the X-ray determination. The valence force constants are fd(OsN) = 1,81 and fd(OsS) = 1,32 mdyn/Å. Taking into account increments of the trans influence a good adjustment between observed and calculated frequencies is achieved.  相似文献   

8.
The Mixed Crystal System K2OsCl6? K2SnCl6 Homogeneous mixed crystals between K2OsCl6 and K2SnCl6 have been prepared in any composition ratio by precipitation from concentrated K2OsCl6/K2SnCl6 solutions with concentrated hydrochloric acid. The lattice constants follow Vegard's rule.  相似文献   

9.
A microporous La–metal‐organic framework (MOF) has been synthesized by the reaction of La(NO3)3 ? 6 H2O with a ligand 4,4′,4′′‐s‐triazine‐1,3,5‐triyltri‐p‐aminobenzoate (TATAB) featuring three carboxylate groups. Crystal structure analysis confirms the formation of 3D MOF with hexagonal micropores, a Brunauer–Emmett—Teller (BET) surface area of 1074 m2 g?1 and high thermal and chemical stability. The CO2 adsorption capacities are 76.8 cm3 g?1 at 273 K and 34.6 cm3 g?1 at 293 K, a highest measured CO2 uptake for a Ln–MOFs.  相似文献   

10.
Vibrational and Electronic Spectra of Decahalogenodiosmates(IV), [Os2X10]2?, X ? Cl, Br The IR and Raman spectra of the edge-sharing bioctahedral anions [Os2X10]2?, X ? Cl, Br, are assigned according to point group D2h. The bands are found in three characteristic regions; at high wavenumbers stretching vibrations with terminal ligands v(OsClt): 365–280, v(OsBrt): 235–195; in a middle region with bridging ligands v(OsClb): 270–240, v(OsBrb): 175–165 cm?1; the deformation bands are observed at distinct lower frequencies. The electronic spectra of the dimers show intraconfigurational transitions near 2000, 1000, and 600 nm which by position and intensity correspond to those of the monomeric complexes. They are therefore discussed separately for both metal centers according to C2v symmetry. Two additional band systems are presumable pair transitions arising from interactions of the central ions within the dimeric complexes. Due to the different bonding strength of terminal or bridging ligands the intensive charge transfer bands are shifted by 3000–4000 cm?1 bathochromicly or by 2000–3000 cm?1 hypsochromicly compared with the hexahaloosmates(IV).  相似文献   

11.
Photochemical Ligand Exchange of Hexahalo Osmates(IV) Irradiation of hexahaloosmates(IV) in various polar solvents (H2O, CH3CN, C5H5N) gives preferable monosubstituted products. First time [OsCl5(NC? CH3)]?, [OsBr5(NC? CH3)]? and [OsCl5py]? are prepared photochemically in larger amounts. The quantum yields in the region 313–436 nm are 10?2–10?3. The photochemical stability of the mono-substituted products is discussed. By photolysis of [OsBr6]2? in CH2Cl2 and 1,2-C2H4Cl2 the mixed-ligand complexes [OsClnBr6–n]2? are formed. After ionophoretic separation for the species with n = 2, 3, 4 a statistical ratio of the stereoisomers is observed. Slow photosubstitution takes place too in alkali halide pellets of the complex salts at room temperature.  相似文献   

12.
Preparation and Spectroscopic Characterization of Bondisomeric Halogenoselenocyanatoosmates (IV) The new compounds [OsCl5(NCSe)]2?, [OsCl5(SeCN)]2?, tr.-[OsCl4(NCSe)(SeCN)]2?, tr.-[OsCl4I(NCSe)]2? and tr.-[OsCl4I(SeCN)]2? are prepared from [OsCl5I]2? and tr.-[OsCl4I2]2? by oxidative ligand exchange with (SeCN)2 or by reaction with suspended Pb(SeCN)2 in CH2Cl2 and isolated by ion exchange chromatography on DEAE cellulose. The bondisomers are significantly distinguished by the frequencies of innerligand vibrations: νCN(Se), νCN(N), νCSe(N) > νCSe(Se), δNCSe >, δSeCN. The electronic spectra measured at 10 K on the solid salts exhibit in the region 450–650 nm intensive Se → Os and N → Os charge transfer bands. Essentially weaker intraconfigurational transitions (t) are observed near to 2000 and 1000 nm, splitted by lowered symmetry (C4v) and spin orbit coupling. Only some of the 0–0-transitions may be assigned by measuring electronic Raman bands with the same frequencies.  相似文献   

13.
Przeszlakowski S  Flieger A 《Talanta》1976,23(11-12):844-846
The complex anions OsCl62−, OsO2Cl42− and OsCl63− were separated by extraction chromatography on paper treated with tributyl phosphate and developed with hydrochloric acid. The chloride complexes of osmium and ruthenium can also be separated in the system TBP-HCl or Amberlite LA-1 hydrochloride-HCl.  相似文献   

14.
A polynuclear mixed‐valent osmium hexacyanoferrate/silicomolybdate film electrode has been prepared using repetitive cyclic voltammetry. The cyclic voltammograms have been recorded for the deposition of a mixed‐valent osmium hexacyanoferrate/silicomolybdate hybrid film directly from the mixture of Os3+, Fe(CN6)3?, and SiMo12O404? ions from the acidic aqueous solutions. The polynuclear mixed‐valent osmium hexacyanoferrate/silicomolybdate film exhibited four redox couples. The electrocatalytic properties of the osmium hexacyanoferrate/silicomolybdate film electrode have been studied. The modified electrode has shown good electrocatalytic properties towards the oxidation of dopamine, ascorbic acid, epinephrine, norepinephrine, and reduction of IO3?, Fe3+.  相似文献   

15.
Preparation and Characterization of Tetrakis(chloro-bromo) Oxalatoosmates(IV) On treatment of [OsBr4ox]2? with Cl? the yellow to orange coloured complexes [OsClnBr4?nox]2?, n = 1, 2, 3, are formed. The separation of geometric isomers is difficult but possible by ion exchange chromatography on diethylaminoethyl cellulose. The 10 K absorption spectra show in the UV/VIS region intensive Br←Os and Cl←Os charge transfer bands and in the NIR weak intraconfigurational transitions splitted by spin-orbit coupling and lowered symmetry into 5 components. A very weak spin-forbidden d—d-transition at about 600 nm is improved as a luminescence absorption band in the Raman spectrum.  相似文献   

16.
Preparation and Spectroscopic Characterization of Bond-Isomeric Halogenorhodanoosmates(IV) By oxidation of tr.-[OsCl4BrI]2? or tr.-[OsCl4I2]2? with (SCN)2 in CH2Cl2, by substitution of [OsCl5I]2? with SCN? or [OsCl5(NCS)]2? with F? in toluene and by reaction of [OsF5Cl]2? with (SCN)2 in CH2Cl2 the following bondisomers are prepared: tr.-[OsF4Cl(NCS)]2?/tr.-[OsF4Cl(SCN)]2?, tr.-[OsFCl4(NCS)]2?/tr.-[OsFCl4(SCN)]2?, tr.-[OsCl4Br(NCS)]2?/tr.-[OsCl4Br(SCN)]2?, tr.-[OsCl4I(NCS)]2?/tr.-[OsCl4I(SCN)]2?,tr.-[OsCl4(NCS)2]2?/tr.-[OsCl4(NCS)(SCN) ]2?/tr.-[OsCl4(SCN)2]2?, [OsBr5(NCS)]2?/[OsBr5(SCN)]2? and tr.-[OsBr4(NCS)(SCN)]2?. All complexes are isolated as pure compounds by ion exchange chromatography on DEAE-cellulose. In the IR and Raman spectra νCN(S), νCS(N) and δNCS are found at higher wave numbers than νCN(N), νCS(S) and δSCN. According to spin orbit coupling and to lowered symmetry (D4h, C4v) the splitted intraconfigurational transitions are observed at 10 K as weak bands in the regions 600, 1000, 2000 nm. The O? O transitions are calculated from vibrational fine structure and in some cases are confirmed by electronic Raman bands with the same frequencies. The energy niveaus deduced with ζ(OsIV) = 3200 cm?1 and the calculated Racah parameters B are in good agreement with the barycenters of the observed multiplets for D4h and C4v symmetry.  相似文献   

17.
The reaction of H2[OsBr6] with DMSO in ethanol solution resulted in DMSO complex [H(dmso-O)2][OsIII(dmso-S)2Br4] (1) described previously as an intermediate product in the reaction of K2[OsBr6] with DMSO and characterized by EAS and ESR spectra. The coordination of DMSO molecules was established by IR and 1H and 13C NMR spectroscopy. The oxidation state of osmium and trans arrangement of DMSO molecules in the anion were established by ESR. The behavior of complex 1 in solutions was studied by EAS, ESR, and mass-spectrometry: a displacement of Br? ions accompanied by the reduction of osmium to oxidation state +2 occurs in DMSO, a solvation with displacement of DMSO molecules is observed at the first stage in water and methanol (rate constants 2.3 × 10?4 and 1.7 × 10?3 s?1, respectively), the sequential substitution of DMSO molecules and osmium oxidation to form [OsIVBr6]2? ions takes place in 4 mol/L HBr.  相似文献   

18.
The reported synthesis of tetrachlorobis(triphenylphosphine) osmium(IV) is shown to proceed via initial formation of a salt, [Ph3PH]2[OsCl6], front which the corresponding [Me3PH]+ salt can be obtained by exchange; the latter salt reacts with acetone to give [Me3PC(OH)Me2]2[OsCl6]. The action of methyl and trimethylsilylmethyl alkylating agents on the hexachloroosmates and on OsCl3(PPh3)3 to give σ-alkyls is reported. The complex trans-OsMe2(PPh3)4 reacts with carbon monoxide to give the corresponding bis acetyl. The complex trans-OsCl2(PMe3)4 is resistant to attack by alkylating agents. The interaction of bis(trimethylsilylmethyl)magnesium with OsO4 in pentane at ?70°C yields (Me3SiCH2)4OsO.  相似文献   

19.
Phthalimide dithiosemicarbazone forms a 1:1 complex with osmium at pH 3.3–4.5 (?450 = 1.3 · 104 l mol?1 cm?1 ) which is applied to the photometric determination of osmium; Beer's law is obeyed for the range 1–12 μg Os ml?1. The oxidation of the reagent with cerium(IV) is catalyzed by osmium(VIII), and this reaction allows a more sensitive procedure for the determination of osmium; the calibration curve is linear over the range 0.05–0.4 μg Os ml?1. The interferences in both procedures are described.  相似文献   

20.
Preparation, Crystal Structure, and Normal Coordinate Analysis of Linkage Isomeric Pentachloroiodoselenocyanatoosmates(IV). Crystal Structure of trans‐(PPh4)2[OsCl4I(NCSe)] By treatment of the solution of (n‐Bu4N)2[OsCl5I] in dichloromethane with suspended Pb(SeCN)2 the linkage isomers trans‐(n‐Bu4N)2[OsCl4I(NCSe)] ( 1 ) and trans‐(n‐Bu4N)2[OsCl4I(SeCN)] ( 2 ) are formed, which have been separated by ion exchange chromatography on diethylaminoethyl cellulose. The X‐Ray structure determination on a single crystal of trans‐(PPh4)2[OsCl4I(NCSe)] (triclinic, space group P1¯, a = 10.8950(13), b = 11.076(2), c = 20.980(2)Å, α = 96.940(10), β = 98.747(9), γ = 104.419(11)°, Z = 2) reveals, that the nearly linear selenocyanate group in trans position to the iodine atom is coordinated with the Os‐N‐C angle of 171.1°. Based on the molecular parameters of the X‐ray determination ( 1 ) and estimated data ( 2 ) the IR and Raman spectra of both linkage isomers are assigned by normal coordinate analysis. The valence force constants are fd(OsN) = 1.70 und fd(OsSe) = 1.15 mdyn/Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号