首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A novel strategy for fabricating horseradish peroxidase (HRP)-based H(2)O(2) sensor has been developed by combining the merits of carbon sol-gel supporting matrix and nano-scaled particulate gold (nano-Au) mediator. The thiol functional group-derived carbon ceramic electrode (CCE) was first constructed using (3-mercaptopropyl) trimethoxy silane as sol-gel monomer. Then, the stable nano-Au monolayer was obtained through covalent linkage between nano-Au and thiol group on the surface of CCE. The experimental results showed that nano-Au monolayer formed not only could steadily immobilize HRP but also efficiently retain its bioactivity. Hydrogen peroxide was detected with the aid of hydroquinone mediator to transfer electrons between the electrode and HRP. The process parameters for the fabrication of the enzyme electrode and various experimental variables such as the operating potential, mediator concentration and pH of background electrolyte were explored for optimum analytical performance of the enzyme electrode. The biosensor had a fast response of less than 8 s with linear range of 1.22 x 10(-5) to 1.10 x 10(-3)mol l(-1) and a detection limit of 6.1 x 10(-6)mol l(-1). The sensitivity of the sensor for H(2)O(2) was 0.29 A l mol(-1) cm(-2). The activation energy for enzyme reaction was calculated to be 10.1 kJ mol(-1). The enzyme electrode retained 75% of its initial activity after 5 weeks storage in phosphate buffer at pH 7.  相似文献   

2.
A feasible method to fabricate glucose biosensor was developed by covalent attachment of glucose oxidase (GOx) to a gold nanoparticle monolayer modified Au electrode. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) of ferrocyanide followed and confirmed the assemble process of biosensor, and indicated that the gold nanoparticles in the biosensing interface efficiently improved the electron transfer between analyte and electrode surface. CV performed in the presence of excess glucose and artificial redox mediator, ferrocenemethanol, allowed to quantify the surface concentration of electrically wired enzyme (Gamma(E)(0)) on the basis of kinetic models reported in literature. The Gamma(E)(0) on proposed electrode was high to 4.1 x 10(-12) mol.cm(-2), which was more than four times of that on electrode direct immobilization of enzyme by cystamine without intermediate layer of gold nanoparticles and 2.4 times of a saturated monolayer of GOx on electrode surface. The analytical performance of this biosensor was investigated by amperometry. The sensor provided a linear response to glucose over the concentration range of 2.0 x 10(-5)-5.7 x 10(-3) M with a sensitivity of 8.8 microA.mM(-1).cm(-2) and a detection limit of 8.2 microM. The apparent Michaelis-Menten constant (K(m)(app)) for the sensor was found to be 4.3 mM. In addition, the sensor has good reproducibility, and can remain stable over 30 days.  相似文献   

3.
Lei CX  Hu SQ  Shen GL  Yu RQ 《Talanta》2003,59(5):981-988
A procedure for fabricating an enzyme electrode has been described based on the effective immobilization of horseradish peroxidase (HRP) to a nano-scaled particulate gold (nano-Au) monolayer modified chitosan-entrapped carbon paste electrode (CCPE). The high affinity of chitosan entrapped in CCPE for nano-Au associated with its amino groups has been utilized to realize the use of nano-Au as an intermediator to retain high bioactivity of the enzyme. Hydrogen peroxide (H2O2) was determined in the presence of hydroquinone as a mediator to transfer electrons between the electrode and HRP. The HRP immobilized on nano-Au displayed excellent electrocatalytical activity to the reduction of H2O2. The effects of experimental variables such as the operating potential of the working electrode, mediator concentration and pH of measuring solution were investigated for optimum analytical performance by using an amperometric method. The enzyme electrode provided a linear response to hydrogen peroxide over a concentration range of 1.22×10−5-2.43×10−3 mol l−1 with a sensitivity of 0.013 A l mol−1 cm−2 and a detection limit of 6.3 μmol l−1 based on signal per noise =3. The apparent Michaelis-Menten constant (Kmapp) for the sensor was found to be 0.36 mmol l−1. The lifetime, fabrication reproducibility and measurement repeatability were evaluated with satisfactory results. The analysis results of real sample by this sensor were in satisfactory agreement with those of the potassium permanganate titration method.  相似文献   

4.
Pesticides are widely used in paddy field to control pests, diseases, weeds and other rice pathogens in minimizing a serious loss in rice production. The presence of pesticide residues and metabolites in rice, water, soil, currently represents a major environmental pollutant issues. It sometime will cause insect pest outbreaks in paddy field. An electrochemical enzyme inhibition sensor using screen-printed carbon working electrode with onboard carbon counter and silver–silver chloride pseudo-reference electrode for insecticides detection is described in this paper (Figure 1). The detection is based on the inhibition of insecticides used in paddy field towards acetyl-cholinesterase enzyme (AChE) with the presence of Acetylthiocholine Iodide (ATCh) substrate on the sensor surface. The mixtures of AChE enzyme (0.02 UmL-1), electron mediator, TCNQ (1mM) and polypyrrole matrix (75 mM) were electro- polymerized on the sensor surface with a constant potential of 1.0V for 20 minutes. The sensor was soaked for 5 minutes with insecticides standard or sample containing insecticides before the electrochemical measurement was taken by adding Acetylthiocholine Iodide substrate in KCl (0.08M, pH 7.5) which acts as the enzyme mediator /substrate system. The current measurement was conducted using chronoamperometry at 100mV vs. on board screen-printed Ag-AgCl pseudo- reference electrode. Comparative analysis of spiked water samples with 0.1ppm pesticides and real samples (paddy) also were conducted using enzyme inhibition sensor and gas chromatography methods. From the data analysis, it showed very comparable results with R2 = 0.96 in the correlation plot for paddy samples samples. This makes the developed sensor a potential tool for the rapid, simple and sensitive detection of insecticides residues in agriculture industry.  相似文献   

5.
A cyclic voltammetric simulation that can be applied to an electrochemically mediated enzyme reaction involving any substrate and mediator concentration was developed. Concentration polarization of the substrate in the vicinity of an electrode was considered as well as mediator concentration. Reversible electrochemical reaction with one electron followed by an enzyme reaction with two electrons was modeled. The differential equations for the mediator and substrate were solved using digital simulation techniques. The calculated cyclic voltammograms showed prepeaks when there was a low substrate concentration, high mediator concentration, and high enzyme activity. The prepeak was experimentally observed in the case of an enzyme electrode co-immobilized with a redox polymer. The enzyme electrode loaded at high redox polymer and high enzyme content showed a prepeak at low substrate concentration in the cyclic voltammogram.  相似文献   

6.
A non-enzyme nanosized Pt flower based amperometric sensor for hydrogen peroxide (H2O2) is developed. Pt flower were deposited on the gold plated with the method of potentiostatic deposition. The performance of nanosized Pt flower electrode has been characterized with cyclic voltammetric technique and spectroscopic measurements. The Pt nanoparticle can effectively catalyzes the oxidation of H2O2 at a favorable potential. The prepared sensor exhibited low detection limit, and quite long-term stability, and it could detect H2O2 without any additional mediator or enzyme. The linear range of the Pt/Au electrode toward H2O2 is 0.1–0.9?mM, and the detection limit of 0.06?mM was obtained according to 3σ rule. Because of its sensitivity and biocompatibility, it can be used for real sample analysis. The recovery ratio was of 97–106?%, which indicated that the accuracy of this method is also satisfied. It may be widely used in chemical, biological, clinical, food, and environmental fields.  相似文献   

7.
曾涵  赵淑贤  龚兰新  粟智 《应用化学》2013,30(4):436-443
采用循环伏安法将聚苯并咪唑和漆酶的复合物共沉积在玻碳电极表面。 制备的漆酶基电极在O2气饱和的磷酸盐缓冲液中可以观察到明显的催化还原电流,实现了无媒介体的酶-电极间直接电子迁移,电极静止时氧还原起始电位为645 mV,近于漆酶活性位T1的式电位580 mV,而极限扩散催化电流密度可达318.5×10-6 A/cm2。 但由于O2气在致密的固酶导电聚合物修饰层中扩散不够快(扩散系数只有在溶液中的1.25%),导致电极以较高速度旋转时极限扩散催化电流密度仅仅增加到1×10-3 A/cm2。 根据静态时极限催化电流密度求算得到的固定漆酶催化氧还原平均转化率为21.7/s。 这种漆酶基电极具有良好的重现性和长期使用性(储存10 d后催化活力仍然保持了初始值的80%以上),在人体生理温度和弱酸性条件下具有最佳催化活力。 这种漆酶基电极作为氧传感器具有良好的传感性能:检测限低(0.5 μmol/L),灵敏度高(71.1 μA·L/mmol),且对O2具有良好的亲和力(KM=89.9 μmol/L)。  相似文献   

8.
Magnetic mesoporous silica was used for electrode modification and electro-oxidation of some cardiovascular drugs. The modified electrode was applied for detection of cardiovascular drugs using cyclic voltammetry, chronoamperometry, and differential pulse voltammetry. The modified electrode shows many advantages as an electrochemical sensor such as simple preparation method without using any specific electron transfer mediator or specific reagent, high sensitivity, excellent activity, short response time, long term stability and remarkable antifouling property toward for cardiovascular drugs and its oxidation product. Finally, the applicability of the sensor for determination of the selected drugs in human serum samples has been successfully demonstrated.  相似文献   

9.
基于Fe3O4/Au/GOx的新型磁性敏感膜葡萄糖传感器研制   总被引:3,自引:0,他引:3  
在核壳结构Fe3O4/Au微粒上共价固定葡萄糖氧化酶,制得磁性复合粒子Fe3O4/Au/Gox,该复合粒子保留了良好的超顺磁性。通过磁力将其固定到改进的玻碳电极上,以二茂铁为电子媒介,制得新型葡萄糖传感器。研究了该传感器的传感性能,优化了实验参数。在pH7.0的磷酸盐缓冲溶液中,葡萄糖浓度在5.0×10-5~2.0×10-2mol/L间呈良好线性关系,响应时间小于10s。该传感器有灵敏度高,选择性好,性能稳定,制作简单且易于更新的特点。  相似文献   

10.
The properties of reagentless amperometric biosensors are mainly governed by the interaction of the used redox enzyme and the redox mediators used to facilitate the electron-transfer reaction. Both the used redox mediators and the redox enzymes differ concerning their hydrophilicity and their properties within the matrix of a carbon-paste electrode. Since there is no general procedure which is applicable for any enzyme in combination with any redox mediator, optimisation is necessary for each possible combination. Three approaches for the development of biosensors were investigated using carbon-paste electrodes enriched with redox mediator as a base in all sensor architectures. A class of redox mediators with the common formula Ru(LL)(2)(X)(2) (where LL are 1,10-phenantroline or 2,2'-bipyridine type ligands, and X is an acido ligand) was investigated. In the first approach, enzymes were integrated into the carbon paste; in the second, the enzymes were adsorbed on the surface of the mediator-containing carbon-paste electrode and held in place by a Nafion film; and in the third approach, enzymes were entrapped in polymer films, which were electrochemically deposited onto the electrode's surface. The properties of the obtained biosensors strongly depend on the sensor architecture and the specific features of the used enzyme. Thus, our investigation using three different sensor architectures can provide valuable information about the possible interaction between a specific enzyme and a redox mediators with specific properties.  相似文献   

11.
A novel nonenzymatic glucose sensor was developed based on well‐dispersed gold nanoparticles, which were in situ grown under direction of protein on a reduced graphene oxide modified electrode. This electrode exhibited high electrocatalytic activity towards glucose oxidation without use of any enzyme or mediator. In application for the amperometric detection of glucose, a wide linear range of 0.02–16.6 mM, low detection limit of 5 µM and good selectivity were obtained. The attractive analytical performances of the proposed glucose sensor, coupled with the facile preparation method, provide a promising electrochemical platform for the development of effective nonenzymatic sensors.  相似文献   

12.
A glucose sensor is prepared by adsorption of the mediator Meldola blue (N,N-dimethyl-7-amino-1,2-benzophenoxazinium ion, as well as glucose dehydrogenase, on the surface of a carbon electrode. The nicotinamide coenzyme, whhich is present in the solution, is reduced in the enzymatic reaction and is re-oxidized amperometrically at 0 mV vs. Ag/AgCl. The properties of such electrodes depend on whether the mediator or the enzyme is adsorbed first; possible models for the molecular arrangements at the surface are discussed. The modified electrode is mounted in a flow-through cell in a flow-injection system and tested with 50-μl injections of β-d-glucose. The calibration graphs were linear in the range 5 × 10?6—2 × 10?3 M βd glucose with the highest sensitivity at pH 6.0. The membrane-free enzyme electrode has a fast response; peak widths are 12 s at half height (flow rate 0.7 ml min?1, making it possible to process 100 samples h?1.  相似文献   

13.
We investigated a L ‐phenylalanine (L ‐phe) biosensor, functionalized through enzyme immobilization on a polymer‐blend film. The electron mediator 3,4‐dihydroxybenzaldehyde (3,4‐DHB) was employed at the electrode surface to improve direct oxidation of NADH to NAD+ and no additional reagents is required to be added to the sample solution. The bioactivated electrode was coated with a semi‐permeable cellulose acetate membrane in order to prevent dissolution of biofunctionalized polymer‐blend film. This constructed enzyme electrode is the first selective biosensor for phenylketonuria (PKU) detection. The sensitivity of the enzyme electrode was determined as 12.014 mA/M cm2. The Michaelis–Menten and current responses as well as sensitivity of the electrode showed improved values than those of previous works. This selective biosensor presented an excellent electroanalytical response for L ‐phe, with a high steady‐state current being obtained after 20 s. The sensitivity of our biodevice is quite sufficient for the purpose of PKU detection because the reference range of clinical concern for L ‐phenylalanine concentration is CL ‐phe>0.5 mM. This surface‐bioactivated enzyme electrode retained more than 80 % of its electrocatalytic activity after 16 days.  相似文献   

14.
Multiwalled carbon nanotube (CNT) modified glassy carbon electrode immobilized with horseradish peroxidase (HRP) in Nafion coating showed direct electron transfer between HRP enzyme and the CNT‐modified electrode. A mediator‐free bienzyme glucose biosensor based on horseradish peroxidase and glucose oxidase was constructed. The bienzyme biosensor exhibited a high sensitivity for glucose detection at zero applied potential.  相似文献   

15.
本文报道二茂铁修饰电极为基底的漆酶电极的研制及应用,讨论了电极性能及响应机理,找出了实验最佳条件。并对环境污水中对苯二酚含量进行规定。一结果令人满意。  相似文献   

16.
Salimi A  Mamkhezri H  Hallaj R 《Talanta》2006,70(4):823-832
A sol-gel carbon composite electrode (CCE) has been prepared by mixing a sol-gel precursor (e.g. methyltrimethoxysilane) and carbon powder without adding any electron transfer mediator or specific reagents. It was demonstrated that this sensor can be used for simultaneous determination ascorbic acid, neurotransmitters (dopamine and adrenaline) and uric acid. Direct electrochemical oxidation of ascorbic acid, uric acid and catecholamines at a carbon composite electrode was investigated. The experimental results were compared with other common carbon based electrodes, specifically, boron doped diamond, glassy carbon, graphite and carbon paste electrodes. It was found that the CCE shows a significantly higher of reversibility for dopamine. In addition, in comparison to the other electrodes used, for CCE the oxidation peaks of uric acid, ascorbic acid and catecholamines in cyclic and square wave voltammetry were well resolved at the low positive potential with good sensitivity. The advantages of this sensor were high sensitivity, inherent stability and simplicity and ability for simultaneous determination of uric acid, catecholamines and ascorbic acid without using any chromatography or separation systems. The analytical performance of this sensor has been evaluated for detection of biological molecules in urine and serum as real samples.  相似文献   

17.
Introduction The detection and quantitative determination of hydrogen peroxide play importantrole in several fields including biochemistry and environmental chemistry.A highlysensitive H202 sensor is useful to fabricate sensor for various substances by combiningit with hydrogen peroxide—producing oxidases.‘Although electrochemical detection ofH202 has been made via its oxidation or reduction at a variety of electrode materials,these electrodes are susceptible to the interference from electr…  相似文献   

18.
A mixed‐valence cluster of cobalt(II) hexacyanoferrate and fullerene C60‐enzyme‐based electrochemical glucose sensor was developed. A water insoluble fullerene C60‐glucose oxidase (C60‐GOD) was prepared and applied as an immobilized enzyme on a glassy carbon electrode with cobalt(II) hexacyanoferrate for analysis of glucose. The glucose in 0.1 M KCl/phosphate buffer solution at pH = 6 was measured with an applied electrode potential at 0.0 mV (vs Ag/AgCl reference electrode). The C60‐GOD‐based electrochemical glucose sensor exhibited efficient electro‐catalytic activity toward the liberated hydrogen peroxide and allowed cathodic detection of glucose. The C60‐GOD electrochemical glucose sensor also showed quite good selectivity to glucose with no interference from easily oxidizable biospecies, e.g. uric acid, ascorbic acid, cysteine, tyrosine, acetaminophen and galactose. The current of H2O2 reduced by cobalt(II) hexacyanoferrate was found to be proportional to the concentration of glucose in aqueous solutions. The immobilized C60‐GOD enzyme‐based glucose sensor exhibited a good linear response up to 8 mM glucose with a sensitivity of 5.60 × 102 nA/mM and a quite short response time of 5 sec. The C60‐GOD‐based glucose sensor also showed a good sensitivity with a detection limit of 1.6 × 10‐6 M and a high reproducibility with a relative standard deviation (RSD) of 4.26%. Effects of pH and temperature on the responses of the immobilized C60‐GOD/cobalt(II) hexacyanoferrate‐based electrochemical glucose sensor were also studied and discussed.  相似文献   

19.
Electrochemical sensing of carcinoembryonic antigen(CEA)on a gold electrode modified by the se- quential incorporation of the mediator,thionine(Thi),and gold nanoparticles(nano-Au),through co- valent linkage and electrostatic interactions onto a self-assembled monolayer configuration is de- scribed in this paper.The enzyme,horseradish peroxidase(HRP),was employed to block the possible remaining active sites of the nano-Au monolayer,avoid the non-specific adsorption,instead of bovine serum albumin(BSA),and amplify the response of the antigen-antibody reaction.Electrochemical ex- periments indicated highly efficient electron transfer by the imbedded Thi mediator and adsorbed nano-Au.The HRP kept its activity after immobilization,and the studied electrode showed sensitive response to CEA and high stability during a long period of storage.The working range for the system was 2.5 to 80.0 ng/mL with a detection limit of 0.90 ng/mL.The model membrane system in this work is a potential biosensor for mimicking the other immunosensor and enzyme sensor.  相似文献   

20.
A feasible approach to construct multilayered enzyme film on the gold electrode surface for use as biosensing interface is described. The film was fabricated by alternate layer-by-layer deposition of periodate-oxidized glucose oxidase (GOx) and poly(allylamine) (PAA). The covalent attachment process was followed and confirmed by electrochemical impedance spectroscopy (EIS). X-ray diffraction (XRD) experiments revealed that the film was homogeneous and formed in an ordered manner with a thickness of 2.6 ± 0.1 nm per bilayer. The gold electrodes modified with the GOx/PAA multilayers showed excellent electrocatalytical response to the oxidation of glucose when ferrocenemethanol was used as an artificial redox mediator, which was studied by cyclic voltammetry (CV). From the analysis of voltammetric signals, the coverage of active enzyme on the electrode surface was estimated, which had a linear relationship with the number of GOx/PAA bilayers. This suggests that the analytical performance such as sensitivity, detection limit, and so on, is tunable by controlling the number of attached bilayers. The six GOx/PAA bilayer electrode exhibited a sensitivity of 15.1 μA mM−1 cm−2 with a detection limit of 3.8 × 10−6 M. In addition, the sensor exhibited good reproducibility and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号