首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shock-wave generation during dry laser cleaning of particles   总被引:1,自引:0,他引:1  
Generation of shock waves during a dry laser-cleaning process was examined with the probe-beam-deflection technique. Our experimental set-up allows measurement of a density gradient and a time of flight of the generated optoacoustic waves. With analysis of the measured signals we observed supersonic propagation velocities, density profiles matching the shock-wave profile, and reasonable agreement between the shock-wave theory and measured data. Furthermore, we inspected the mechanisms for the generation of these optoacoustic waves. For the clean surface a rapid thermoelastic surface expansion is the main generation mechanism, creating only weak shock waves; however, during the dry laser cleaning the ejected contaminants generate relatively strong shock waves. This difference is easily observed with our experimental set-up, thus enabling the on-line monitoring of the laser-cleaning process. PACS 79.20.Ds; 81.65.Cf; 43.25.+y  相似文献   

2.
3.
4.
5.
Previous analysis of dry laser cleaning within the frame of a one-dimensional (1D) model with homogeneous surface heating shows that this model disagrees with experiments by one–two orders of magnitude. The particle on the surface produces an inhomogeneous intensity distribution in its vicinity due to scattering and diffraction. This produces a nonstationary 3D distribution of the temperature and nonstationary 3D thermal deformations of the surface. If one uses the Mie theory for calculation of inhomogeneous intensity then in some region of the parameters, the 3D model predicts results close to the experimental ones. The next step was done when the scattering effects for radiation reflected from the surface was taken into account (so-called “particle on surface” problem). This approach yields results close to the experimental one within the wide range of parameters. PACS 42.25.Fx; 42.25.Hz; 81.65.CfAn erratum to this article can be found at .  相似文献   

6.
7.
Acoustic expressions have been derived for the thermal expansion of substrate surfaces due to irradiation by an exponential laser pulse. The result of acoustic effects on three substrates (silicon, glass and silica) with different absorptions has been calculated.It has been shown that for substrates having relatively low absorptions, like silica and glass, acoustic considerations substantially reduce thermal expansion of the substrate caused by irradiation by nanosecond laser pulses relative to a quasi-static expansion model. In particular, the expansion of the substrate occurs over a much longer time frame than when the quasi-static approximation holds. Consequently, acceleration of the substrate surface is greatly reduced and laser cleaning threshold fluences for particle removal are increased.The predictions of the model of Arnold et al. when developed for acoustic considerations give reasonable agreement with experimentally found threshold fluences for alumina particles on silica and glass substrates although it underestimates the ratio of the threshold cleaning fluences of silica and glass. This could be due to the model underestimating the contribution of surface expansion to the laser cleaning process. The influence of multiple reflections in the substrate and departure from one dimensionality in the heat conduction on the threshold fluence was found to be insignificant. Thermal contact between the particle and the substrate was also found to have little effect on laser cleaning threshold fluences. Another mechanism that may enhance surface expansion is the 3D focussing of radiation by the particles. PACS 42.62.Cf; 81.65.Cf; 42.55.Lt  相似文献   

8.
This paper is to investigate the mechanisms of micro-scale particle removal by surface wave, which was induced by a short pulse laser in a cleaning process. The authors analyzed the adhesive forces of particles on substrate surface and the clearance force produced by surface wave in laser cleaning. The physical model of particle removal by laser-induced surface wave was established to predict the removal area and the processing conditions of laser cleaning. In this research, a KrF excimer laser was applied to irradiate 304 stainless steel specimen distributed with copper particles to generate surface wave for copper particle removal. Considering that a time-varying and uniformly distributed heat source irradiates on material surface with thermao-elastic behavior, the displacement and acceleration of substrate induced by a pulsed laser were solved by an uncoupled thermal–mechanical analysis based on the finite element method. The processing parameters such as laser energy, laser spot size are discussed, respectively. A series of laser cleaning experiments were designed to compare with computation results. The results show that the removal area by surface wave beyond the laser spot increases with the laser energy and that, the surface acceleration decreases with the increase of the laser spot size.  相似文献   

9.
10.
A new off-line timing method for PIN diode signals is presented which allows the plasma delay effect to be suppressed. Velocities of heavy ions measured by the new method are in good agreement within a wide range of masses and energies with velocities measured by time stamp detectors based on microchannel plates.  相似文献   

11.
The efficiency of the "steam laser cleaning" process is examined. For the investigation of the physics of particle removal from the particularly interesting surface of silicon we have deposited well-characterized spherical polymer and silica particles of different diameters ranging from several tens to hundreds of nanometers on commercial wafers. As a result of our systematic study we observe a sharp threshold of the steam cleaning process at 110 mJ/cm2 (5=532 nm, FWHM=7 ns) which is independent of the size (for particles with diameters as small as 60 nm) and material of the particles. An efficiency above 90% after 20 cleaning steps is reached at a laser fluence of 170 mJ/cm2. Experiments with irregularly shaped alumina particles exhibit the same threshold as for spherical particles.  相似文献   

12.
KrF excimer laser-assisted dry and steam cleaning of single-crystal silicon wafers contaminated with three different types of metallic particles was studied. The laser fluence used was 0.3 J/cm2. In the dry process, for samples cleaned with 100 laser pulses the cleaning efficiency was 91, 71 and 59% for Au, Cu and W particles, respectively, whilst in steam cleaning the efficiency is about 100% after 5 laser pulses, independently of the type of contaminant. The effects of laser irradiation on the Si surface are investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Laser processing at 0.3 J/cm2 does not deteriorate the Si-wafer surface, either in dry or steam cleaning. However, the measured XPS intensity coming from the metallic component is greater on the cleaned surfaces than in the initial condition. Quantification of the XPS results, assuming a stratified overlayer model for the detected species and accounting for the presence of the metallic particles on the surface, showed that the obtained results can be explained by the formation of a fractional metallic monolayer on the cleaned surfaces, due to partial vaporisation of small particles initially present on the sample surface. This contamination of the substrate could be considered excessive for some applications and it shows that the process requires careful optimisation for the required efficiency to be achieved without degradation of the substrate. Received: 14 January 2001 / Accepted: 19 February 2001 / Published online: 20 June 2001  相似文献   

13.
The laser-induced backside dry etching (LIBDE) investigated in this study makes use of a thin metal film deposited at the backside of a transparent sample to achieve etching of the sample surface. For the time-resolved measurements at LIBDE fused silica samples coated with 125 nm tin were used and the reflected and the transmitted laser intensities were recorded with a temporal resolution of about 1 ns during the etching with a ∼30 ns KrF excimer laser pulse. The laser beam absorption as well as characteristic changes of the reflection of the target surface was calculated in dependence on the laser fluence in the range of 250-2500 mJ/cm2 and the pulse number from the temporal variations of the reflection and the transmission. The decrease of the time of a characteristic drop in the reflectivity, which can be explained by the ablation of the metal film, correlates with the developed thermal model. However, the very high absorption after the film ablation probably results in very high temperatures near the surface and presumably in the formation of an absorbing plasma. This plasma may contribute to the etching and the surface modification of the substrate. After the first pulse a remaining absorption of the sample was measured that can be discussed by the redeposition of portions of the ablated metal film or can come from the surface modification in the fused silica sample. These near-surface modifications permit laser etching with the second laser pulse, too.  相似文献   

14.
Laser removal of small particles from a metal surface is carried out by changing the incident angle of the laser beam. It has been found that a dramatic improvement of cleaning efficiency in terms of area and energy is observed when using the laser at glancing angle of incidence as compared to perpendicular. Furthermore substrate damage is greatly reduced and probably eliminated at glancing angles. The process mechanism is discussed by considering the adhesion and the laser-induced cleaning forces for different incident angles. It is shown that there are different laser–matter interactions operating. Received: 25 April 2000 / Accepted: 9 May 2000 / Published online: 5 October 2000  相似文献   

15.
During laser cleaning of metallic materials by pulsed lasers surface, modifications can be induced mainly by the transient thermal effect. In ambient conditions an oxidation of the cleaned surface can be detected. The aim of this work was to characterize this transient oxidation that can occur below the laser energy domain leading to any phase change (melting, ablation) of the cleaned substrate.A Q-switched Nd:YAG laser with pulse duration of 10 ns and wavelength of 1064 nm was used for the purposes of this study. For the surface analysis of the treated samples X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) were used.It was found that thermal oxidation took place on the aluminium-magnesium alloy during the irradiation in air with a laser energy ranged from 0.6 to 1.4 J cm-2. It has been demonstrated that this thermal oxidation had the same mechanism as in the case of the steady state thermal oxidation of the aluminium-magnesium alloys even though the laser irradiation was applied only for the very short time of 10 ns. When the laser energy reached the value of 1 J cm-2, the oxide formed by the thermal oxidation became in a large extent crystalline and its outer part was entirely covered by a continuous layer of magnesium oxide. PACS 61.82.Bg; 81.65.Mq; 61.80.Ba  相似文献   

16.
Acoustic emission monitoring during laser shock cleaning of silicon wafers   总被引:4,自引:0,他引:4  
A laser shock cleaning is a new dry cleaning methodology for the effective removal of submicron sized particles from solid surfaces. This technique uses a plasma shock wave produced by laser-induced air breakdown, which has applied to remove nano-scale silica particles from silicon wafer surfaces in this work. In order to characterize the laser shock cleaning process, acoustic waves generated during the shock process are measured in real time by a wide-band microphone and analyzed in the change of process parameters such as laser power density and gas species. It was found that the acoustic intensity is closely correlated with the shock wave intensity. From acoustic analysis, it is seen that acoustic intensity became stronger as incident laser power density increased. In addition, Ar gas has been found to be more effective to enhance the acoustic intensity, which allows higher cleaning performance compared with air or N2 gas.  相似文献   

17.
with a pressure pulse width of . Additionally, the phase of an acoustic pulse is observed to change upon reflection at the liquid–solid interface if bubbles are present, providing a direct proof for laser-induced bubbles. Received: 5 December 1996/Accepted: 6 January 1997  相似文献   

18.
19.
吴迪  王续跃 《中国光学》2016,9(5):554-562
本文设计了一套加工装置,对氧化锆陶瓷板激光切割的熔化物颗粒进行收集,并采用Imagine-Pro Pluse(IPP)图像处理软件对熔化物颗粒的形态(数量、形状、平均直径、标准差及其分布情况)进行研究。通过气熔比控制方法,对板厚分别为0.8 mm、1 mm、1.5 mm、3 mm的氧化锆陶瓷板进行激光切割实验。实验结果表明:不同板厚参数下,球形熔化物颗粒所占百分比范围从99.21%降到89.81%,圆饼形从0.79%升至7.44%,哑铃形从0升至2.75%。随着板厚的增加,圆饼形和哑铃形颗粒所占百分比增大,球形颗粒所占百分比降低,球形颗粒平均直径和标准差随之增大,切面粗糙度由2.287μm增加到5.946μm。建立了熔化物去除几何模型,阐述了熔化物颗粒与切割质量的关系,球形颗粒所占的百分比越大,平均直径和标准差越小,切割质量越好,最终获得质量较高切割样件。  相似文献   

20.
Steam Laser Cleaning with a pulsed infrared laser source is investigated. The infrared light is tuned to the absorption maximum of water (λ=2.94 μm, 10 ns), whereas the substrates used are transparent (glass, silicon). Thus a thin liquid water layer condensed on top of the contaminated substrate is rapidly heated. The pressure generated during the subsequent phase explosion generates a cleaning force which exceeds the adhesion of the particles. We examine the cleaning threshold in single shot experiments for particles sized from 1 μm down to 300 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号