首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemical behavior of nicotinamide was studied at a carbon paste electrode and the electrodes modified with macrocyclic compounds using voltammetric and impedance measurements. The electrodes so formed were able to bind nicotinamide ions chemically and gave better voltammetric responses than the unmodified ones. The macrocycles used as modifiers for the electrode preparation were 18-crown-6, dicyclohexano-18-crown-6, dibenzo-18-crown-6, 7,16-dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane, 1,4,7,10,13,16-hexathiacyclooctadecane (Hexathia), 1,4,7,10-tetratosyl-1,4,7,10-tetraazacyclododecane, 1,4,8,11-tetraazacyclooctadecane, c-Methylcalix[4]resorcenarene and calix[8]arene. Among these macrocyclic modified electrodes, hexathia showed more affinity towards nicotinamide and a 2.3-fold increase in voltammetric signal was obtained. Impedance measurement was used to confirm this enhancement observed on modified electrode. This increase in anodic peak current was then used for finding linear working range, which was 0.1–500 μg mL−1 with a detection limit of 0.03 μg mL−1 by DPV. Interference from other vitamins like thiamine HCl (Vit. B1), riboflavin (Vit. B2), pyridoxine HCl (Vit. B6) cynocobamine (Vit. B12), para-aminobenzoic acid (PABA) and ascorbic acid (Vit. C) was also studied. The modified electrode could be used for the simultaneous determination of riboflavin, nicotinamide and pyridoxine HCl. It has also been utilized for the analysis of nicotinamide in pharmaceutical preparations.  相似文献   

2.
Nefazodone, an antidepressant was electrochemically studied in various buffer systems and at different pH using glassy carbon electrode. Nefazodone was electrochemically oxidized at all pH values. According to the linear relation between the peak current and the nefazodone concentration differential pulse (DPV) and square wave (SWV) voltammetric methods for its quantitative determination in pharmaceuticals and human serum were developed. For analytical purposes, a very well resolved diffusion controlled voltammetric peak was obtained in 0.1 M H2SO4 at 0.99 and 1.03 V for DPV and SWV techniques, respectively. The linear response was obtained in the ranges of 8×10−7 to 6×10−4 M with a detection limit of 2.1×10−7 M for DPV and 1.17×10−7 M for SWV techniques. The repeatability and reproducibility of the methods were within 1.03, 0.81% relative standard deviations (R.S.D.) for peak currents and 0.40, 0.20% R.S.D. for peak potentials, for DPV and SWV, respectively. Precision and accuracy of the developed method was checked by recovery studies. The proposed methods were successfully applied to the individual tablet dosage form and human serum.  相似文献   

3.
A carbon paste electrode incorporating silica (Si-MCPE) was fabricated to accumulate Metamitron at the electrode surface. Several electroanalytical techniques were used to explore its reductive behaviour. The results indicate that the system is irreversible and fundamentally controlled by adsorption. The adsorptive stripping response has been evaluated with respect to accumulation time, deposition potential, scan rate, pH and other variables, using differential pulse voltammetry (DPV) and square wave voltammetry (SWV) as redissolution techniques. In both cases a voltammetric peak is obtained, at –0.542 V (DPV) and –0.421 V (SWV) in Britton-Robinson buffer (pH 1.9). The detection limits were 3.66 × 10–1 M and 4.22 × 10–9 M for AdS-DPV and AdS-SWV, respectively. Under optimum conditions the Metamitron reduction peak gave two linear regions in the range from 4.0 × 10–9 M to 8.0 × 10–8 M by means of AdS-DPV, with a coefficient of variation of 2.19% (n = 10) for 1 × 10–8 M herbicide solution. A method was developed for determination of Metamitron in soils, with a recovery of 98.8% and a coefficient of variation of 5.26% (0.01 g/g of soil).  相似文献   

4.
A new, versatile, and simple method for quantitative analysis of zinc, copper, lead, and cadmium in fuel ethanol by anodic stripping voltammetry is described. These metals can be quantified by direct dissolution of fuel ethanol in water and subsequent voltammetric measurement after the accumulation step. A maximum limit of 20% (v/v) ethanol in water solution was obtained for voltammetric measurements without loss of sensitivity for metal species. Chemical and operational optimum conditions were analyzed in this study; the values obtained were pH 2.9, a 4.7-m thickness mercury film, a 1,000-rpm rotation frequency of the working electrode, and a 600-s pre-concentration time. Voltammetric measurements were obtained using linear scan (LSV), differential pulse (DPV), and square wave (SWV) modes and detection limits were in the range 10–9–10–8 mol L–1 for these metal species. The proposed method was compared with a traditional analytical technique, flame atomic absorption spectrometry (FAAS), for quantification of these metal species in commercial fuel ethanol samples.  相似文献   

5.
A multiwalled carbon nanotubes (MWNT) modified glassy carbon electrode (GCE) coated with poly(orthanilic acid) (PABS) film (PABS–MWNT/GCE) has been fabricated and used for simultaneous determination of dopamine (DA) and uric acid (UA) in the presence of ascorbic acid (AA) by differential pulse voltammetry (DPV). Scanning electron microscopy, Fourier transform infrared spectra, and electrochemical techniques have been used to characterize the surface morphology of the PABS–MWNT composite film and the polymerization of ABS on electrode surface. In comparison with the bare GCE and the MWNT-modified GCE, the PABS–MWNT composite film-modified GCE, which combines the advantages of MWNT and the self-doped PABS, exhibits good selectivity and sensitivity for the simultaneous and selective determination of UA and DA in the presence of AA. Due to the different electrochemical responses of AA, DA, and UA, PABS–MWNT/GCE can resolve the overlapped oxidation peak of DA and UA into two well-defined voltammetric peaks with enhanced current responses using both cyclic voltammetry (CV) and DPV. The peak potential separations between DA and UA are 170 mV using CV and 160 mV using DPV, respectively, which are large enough for the selective and simultaneous determination of these species. In the presence of 0.5 mM AA, the DPV peak currents are linearly dependent on the concentration of UA and DA in the range of 6–55 and 9–48 μM with correlation coefficients of 0.997 and 0.993, respectively. The detection limits (S/N = 3) for detecting UA and DA are 0.44 and 0.21 μM, respectively. The PABS–MWNT/GCE shows good reproducibility and stability and has been used for the simultaneous determination of DA and UA in the presence of AA in samples with satisfactory results.  相似文献   

6.
A sequential injection analysis (SIA) system is described for the determination of phenoxybenzamine hydrochloride and metoclopramide using spectrophotometer as detector. The method is based on the detection of an unstable red intermediate compound resulting from the reaction of phenoxybenzamine hydrochloride or metoclopramide with the diazotizating product of p-phenylenediamine with sodium nitrite in hydrochloric acid medium. The sampling frequency is 69 h−1 and 75 h−1 for phenoxybenzamine hydrochloride and metoclopramide, respectively. The linear range is 10–400 μg/mL for phenoxybenzamine hydrochloride with a detection limit of 0.081 μg/mL and 20–250 μg/mL for metoclopramide with a detection limit of 0.034 μg/mL. The RSD is 1.01 and 0.45% for phenoxybenzamine hydrochloride and metoclopramide, respectively. The proposed methods were used to determine phenoxybenzamine hydrochloride and metoclopramide in pharmaceuticals. The results are compared with those obtained by pharmacopoeia method. The article is published in the original.  相似文献   

7.
Chromium(VI) is determined through its direct electrochemical reduction in the bulk of a porous glassy carbon electrode. An electrode filled with the acidified sample and Cr(VI) is reduced by means of a constant current whereas the potential of the electrode is monitored. The limits of detection and quantification were found to be 1.9 and 6.0 μg · L−1, resp. The linear range, repeatability and reproducibility were found to be 5–500 μg · L−1, 1.2, and 1.8%, resp. The influence of Fe(III), Ca(II), Mg(II), sulphates, nitrates, humic acids and surfactants was investigated. Total chromium was measured after chemical oxidation of Cr(III) to chromate by permanganate. The method was applied to analyses of water samples.  相似文献   

8.
《Electroanalysis》2017,29(5):1301-1309
A sensitive electrochemical sensor was fabricated based on ceria‐graphene oxide nanoribbons composite (CeO2‐GONRs) for an antiviral drug, entecavir (ETV). It was characterized by SEM, EDAX, AFM, IR and Raman spectroscopic techniques. The electrochemical behaviour of ETV was investigated by cyclic voltammetric, differential pulse voltammetric (DPV), linear sweep voltammetric (LSV) and square wave voltammetric (SWV) methods at CeO2‐GONRs modified glassy carbon electrode. Good linearity was observed between the peak current and concentration of ETV in the range of 0.51 ‐ 100 μM with a detection limit of 0.042 μM in DPV method, 2.1 – 61.1 μM with a detection limit of 0.7 μM in LSV method and 0.1 ‐ 80 μM with a detection limit of 68.1 nM in SWV method. The proposed sensitive DPV method was successfully applied for the determination ETV in tablets and biological samples.  相似文献   

9.
A voltammetric study of the oxidation of Ceftazidime (CEFT) has been carried out at the glassy carbon electrode by cyclic, differential pulse (DPV) and square wave (SWV) voltammetry. The oxidation of CEFT was irreversible and exhibited diffusion controlled process depending on pH. The oxidation mechanism was proposed and discussed. According to the linear relationship between the peak current and concentration, DPV and SWV voltammetric methods for CEFT assay in pharmaceutical dosage forms and human urine were developed. For analytical purposes, a well resolved diffusion controlled voltammetric peak was obtained in 0.1 M H2SO4 at 1.00 and 1.02 V for differential pulse and square wave voltammetric techniques, respectively. The linear response was obtained within the range of 4 × 10?6?8 × 10?5 M with a detection limit of 6 × 10?7 M for differential pulse and 4 × 10?6–2 × 10?4 M with a detection limit of 1 × 10?6 M for square wave voltammetric technique. The determination of CEFT in 0.1 M H2SO4 was possible over the 2 × 10?6–1 × 10?4 M range in urine sample for both techniques. The standard addition method was used for the recovery studies.  相似文献   

10.
A rapid, simple and sensitive electrochemical assay of horseradish peroxidase (HRP) performed on disposable screen‐printed carbon electrode was developed. HRP activities were monitored by square‐wave voltammetric (SWV) measuring the electroactive enzymatic product in the presence of o‐aminophenol and hydrogen peroxide substrate solution. SWV analysis demonstrated a greater sensitivity and shorter analysis time than the widely used amperometric and differential‐pulsed voltammetric methods. The voltammetric characteristics of substrate and enzymatic product as well as the parameters of SWV analysis were optimized. Under optimized conditions, a linear response for HRP from 0.003 to 0.1 U/mL and a detection limit of 0.002 U/mL (1.25×10?15 mol in 25 μL) were obtained with a good precision (RSD=8%; n=6). This rapid and sensitive HRP assay with microliter‐assay volume could be readily integrated to portable devices and point‐of‐care (POC) diagnosis applications.  相似文献   

11.
This paper reports the selective determination of isoproterenol (IP) in the presence of uric acid (UA) and folic acid (FA) using 2,7-bis(ferrocenyl ethyl)fluoren-9-one modified carbon nanotube paste electrode (2,7-BFCNPE) in 0.1 M phosphate buffer solution (PBS) (pH 7.0). The bare carbon paste electrode does not separate the voltammetric signals of IP, UA, and FA. However, 2,7-BFCNPE not only resolved the voltammetric signals of IP, UA, and FA with potential differences of 150, 325, and 475 mV between IP–UA, UA–FA, and IP–FA, respectively, but also dramatically enhanced the oxidation peak currents of them when compared to bare carbon paste electrode. In PBS of pH 7.0, the oxidation current increased linearly with two concentration intervals of IP, one is 0.08 to 17.5 μM and the other is 17.50 to 700.0 μM. The detection limit (3σ) obtained by DPV was 26.0 ± 2 nM. The practical application of the modified electrode was demonstrated by determining IP in IP injection, urine, and human blood serum.  相似文献   

12.
A simple and very sensitive method has been developed for the determination of ascorbic acid based on the oxidation of ascorbic acid to dehydroascorbic acid by iron(III), followed by a complexation of iron(II) with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol(Br-PADAP). The iron(II) complex is formed immediately, with absorption maxima at 560 and 748 nm and a molar absorptivity of 1.31 × 105 l mole–1cm–1 and 5.69 × 104 l mole–1cm–1, respectively. The ascorbic acid determination is possible with a linear range up to 2.4 μg ml–1, a calibration sensitivity of 0.744 ml μg–1 at 560 nm and 0.323 ml μg–1 at 748 nm, and a detection limit of 15 ng ml–1 and 44 ng ml–1, respectively. The procedure was used for the ascorbic acid determination in several fruit juices and pharmaceutical formulations. The results demonstrated a good precision (R.S.D. < 1%) and are in agreement with those obtained with others methods. The Br-PADAP method proposed is six times more sensitive than the method using the iron(II)-1,10-phenanthroline system. Received: 7 May 1996 / Revised: 1 July 1996 / Accepted: 8 August 1996  相似文献   

13.
A simple and very sensitive method has been developed for the determination of ascorbic acid based on the oxidation of ascorbic acid to dehydroascorbic acid by iron(III), followed by a complexation of iron(II) with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol(Br-PADAP). The iron(II) complex is formed immediately, with absorption maxima at 560 and 748 nm and a molar absorptivity of 1.31 × 105 l mole–1cm–1 and 5.69 × 104 l mole–1cm–1, respectively. The ascorbic acid determination is possible with a linear range up to 2.4 μg ml–1, a calibration sensitivity of 0.744 ml μg–1 at 560 nm and 0.323 ml μg–1 at 748 nm, and a detection limit of 15 ng ml–1 and 44 ng ml–1, respectively. The procedure was used for the ascorbic acid determination in several fruit juices and pharmaceutical formulations. The results demonstrated a good precision (R.S.D. < 1%) and are in agreement with those obtained with others methods. The Br-PADAP method proposed is six times more sensitive than the method using the iron(II)-1,10-phenanthroline system. Received: 7 May 1996 / Revised: 1 July 1996 / Accepted: 8 August 1996  相似文献   

14.
A novel simple method to determine paracetamol with good selectivity has been established by using sodium nitroprusside as the chromogenic reagent. The experiment indicates that sodium nitroprusside can react with paracetamol in a basic solution to form a product with colored O-nitrosamines. The maximal absorption wavelength (λmax) and the apparent molar absorption coefficient of the product are 700 nm and 3.4 × 103 L/mol cm, respectively. A Good linear relationship is obtained between the absorbance and the concentration of paracetamol in a wide range of 0.19–96 μg/mL. The linear regression equation is A = 0.01695 + 0.02240C (μg/mL), with a correlation coefficient of 0.9993. The detection limit (3σ/κ) is 0.10 μg/mL, and the relative standard deviation (RSD) is 0.90% (n = 11). The parameters with regard to determination are optimized, and the reaction mechanism is discussed. The method has been successfully applied to the selective determination of paracetamol in pharmaceutical and biological samples.  相似文献   

15.
A molecularly imprinted polymer was developed and used for solid-phase extraction (MISPE) of the antihelmintic fenbendazole in beef liver samples. Detection of the analyte was accomplished using square wave voltammetry (SWV) at a cylindrical carbon fibre microelectrode (CFME). A mixture of MeOH/HAc (9:1) was employed both as eluent in the MISPE system and as working medium for electrochemical detection of fenbendazole. The limit of detection was 1.9 × 10−7 mol L−1 (57 μg L−1), which was appropriate for the determination of fenbendazole at the maximum residue level permitted by the European Commission (500 μg kg−1 in liver). Given that the SW voltammetric analysis could not be directly performed in the sample extract as a consequence of interference from some sample components, a sample clean-up with a MIP for selectively retaining fenbendazole was performed. The MIP was synthesized using a 1:8:22 template/methacrylic acid/ethylene glycol dimethacrylate ratio. A Britton–Robinson Buffer of pH 9.0 was selected for retaining fenbendazole in the MIP cartridges, and an eluent volume of 5.0 mL at a flow rate of 2.0 mL min−1 was chosen in the elution step. Cross-reactivity with the MIP was observed for other benzimidazoles. The synthesized MIP exhibited a good selectivity for benzimidazoles with respect to other veterinary drugs. The applicability of the MISPE-SWV method was tested with beef liver samples, spiked with fenbendazole at 5,000 and 500 μg kg−1. Results obtained for ten different liver samples yielded mean recoveries of (95 ± 12)% and (96 ± 11)% for the upper and lower concentration level, respectively.  相似文献   

16.
The electrochemical behaviors of uric acid (UA) at the penicillamine (Pen) self-assembled monolayers modified gold electrode (Pen/Au) have been studied. The Pen/Au electrode is demonstrated to promote the electrochemical response of UA by cyclic voltammetry (CV). The diffusion coefficient D of UA is 6.97 × 10−6 cm2 s−1. In differential pulse voltammetric (DPV) measurements, the Pen/Au electrode can separate the UA and ascorbic acid (AA) oxidation potentials by about 120 mV and can be used for the selective determination of UA in the presence of AA. The detection limit was 1 × 10−6 mol L−1. The modified electrode shows excellent sensitivity, good selectivity and antifouling properties.  相似文献   

17.
The voltammetric behavior of Strontium Ranelate (SR) was studied using Cyclic (CV), differential pulse (DPV) and square wave (SWV) voltammetry. CV showed two well‐defined, irreversible, diffusion‐controlled anodic peaks using Britton‐Robinson buffer, pH 2.0 at Pencil graphite (PGE), Carbon paste (CPE) and glassy carbon (GCE) electrodes. The peak current‐concentration relationship was rectilinear over the range 1.0–10.0, 1.0–11.25 and 2.5–24.0 µg/mL at PGE, CPE and GCE respectively, with a minimum detectability of 0.17, 0.24 and 0.39 µg/mL for peak 1 and 0.19, 0.27 and 0.51 µg/mL for peak 2. Recoveries showed the high accuracy of the method; 99.8 %, 99.5 % and 99.7 % at PGE, CPE and GCE respectively for peak 1 and 100.1 %, 99.9 % and 99.7 % at PGE, CPE and GCE respectively for peak 2. Hence DPV and SWV were conducted for the quantitative determination of SR in its pure and pharmaceutical dosage form. the method was validated and the results were in good agreement with those obtained from the reported method.  相似文献   

18.
A simple, economical, and automated spectrophotometric method for the determination of chlorpromazine hydrochloride by sequential injection analysis using ammonium metavanadate as colorimetric reagent is proposed. The various chemical and physical conditions that affected the reaction have been thoroughly investigated. The calibration curve was linear within the range 10–100 μg/mL. The detection limit (S/N = 3) was 0.7 μg/mL and the limit of quantification (S/N = 10) was 2.3 μg/mL. The sampling frequency was 22 h−1. The method has been used for the determination of chlorpromazine hydrochloride in pure form and pharmaceutical formulations. The t-test has revealed that there is no evidence of significant differences between the obtained results at the 95% confidence level. The method can be applied to the quantitative determination of chlorpromazine hydrochloride. It is also applicable in the quality control of chlorpromazine hydrochloride preparations. The text was submitted by the authors in English.  相似文献   

19.
    
Spectral, cyclic voltammetric (CV) and differential pulse voltammetric (DPV) studies on some bis’s(alicyclic-α-amino acidato)copper(II) complexes, CuL2, whereL is alicyclic α-amino acid, at various pH values have been carried out in aqueous media. Electronic absorption and ESR spectral studies at lower pH levels indicate formation of protonated species. At neutral pH these complexes undergo a reversible one-electron Cu(II)⇌Cu(I) redox process at about −0.24 V vs saturated calomel electrode (SCE), at the hanging mercury drop electrode. The electrochemical behaviour of the complexes at lower pH values is discussed in terms of the different species present  相似文献   

20.
Carbamazepine is a widely used anti-epileptic drug with narrow therapeutic range. Many methods have been developed for monitoring the serum drug level. Differential pulse voltammetry (DPV), an electrochemical method advantaged by simple, inexpensive, and relatively short analysis time, has recently been developed for carbamazepine detection. We used a newly developed DPV method with glassy carbon as a working electrode to determine the carbamazepine level. The performance of DPV is compared with the widely used fluorescence polarization immunoassay (FPIA) technique in precision, accuracy, linearity and detection limit. The precision, linearity and accuracy of the DPV and FPIA techniques were comparable at most clinical used levels. The detection limit was 1 μg/mL for the DPV technique and 0.5 μg/mL for the FPIA technique. The performance of the DPV technique was within the FDA guidelines for bioanalytical methods, which ensures the clinical applicability of the DPV technique. The DPV technique may have the potential to be a good alternative for carbamazepine analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号