首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many time-resolved measurements of electrochemical interface have been developed in conformity with the time scale of various transition. X-ray diffraction using synchrotron radiation is a powerful tool for structural determination of electrical double layer in real time. This short review describes structural dynamics of interfacial ions during the faraday and non-faraday processes in the time scale from microsecond to second.  相似文献   

2.
龚正良  张炜  吕东平  郝晓罡  文闻  姜政  杨勇 《电化学》2013,19(6):512-522
同步辐射光源及其相关的谱学技术因其亮度高、单色性好及能量可调等突出特点,为锂离子电池材料组成-结构-性能关系的解析,尤其是其充放电循环过程的电化学反应机理、电极老化及失效的原位、实时动态研究提供了强有力的分析手段. 本文主要结合本课题组的研究工作,并综述同步辐射的电化学原位技术在锂离子电池及其相关材料研究的应用. 重点总结、分析及评述电化学原位XRD及XAFS等技术在电池充放电循环过程中结构演化、离子荷电态及反应动力学过程.  相似文献   

3.
The studies on nuclear resonant scattering by 40K using synchrotron radiation are reviewed. Brilliant and high pure synchrotron radiation permitted us to observe the nuclear resonant forward scattering by 40K in a powdered KCl sample, the excitation of which is impossible with ordinary radioactive sources. Furthermore, nuclear resonant inelastic scattering of synchrotron radiation by 40K in the KCl sample at room temperature has been measured using a high-resolution monochromator. Adding to these, from the excitation experiments of 40K, the energy and lifetime of the first excited state of 40K were confirmed. These measurements clearly show that the studies on the electronic states through hyperfine interactions and the dynamical properties of potassium atoms, which are very important in material science and biology, are possible. It should be noted that 40K is the natural isotope of potassium and weakly radioactive. Our observation of forward and inelastic scattering of the radioactive nuclide 40K will lead to further studies on other radioactive nuclides the resonant forward and inelastic scattering of which are not observed to date.  相似文献   

4.
Synchrotron radiation sources have proven to be highly beneficial in many fields of research for the characterization of materials. However, only a very limited proportion of studies have been conducted by the forensic science community. This is an area in which the analytical benefits provided by synchrotron sources could prove to be very important. This review summarises the applications found for synchrotron radiation in a forensic trace evidence context as well as other areas of research that strive for similar analytical scrutiny and/or are applied to similar sample materials. The benefits of synchrotron radiation are discussed in relation to common infrared, X-ray fluorescence, tomographic and briefly, X-ray diffraction and scattering techniques. In addition, X-ray absorption fine structure analysis (incorporating XANES and EXAFS) is highlighted as an area in which significant contributions into the characterization of materials can be obtained. The implications of increased spatial resolution on microheterogeneity are also considered and discussed.  相似文献   

5.
The acid-catalyzed condensation reaction of perfluorooctyltrimethoxysilane (PFOS) and n-octyltrimethoxysilane (OTMS) in ethanol has been followed by time-resolved synchrotron radiation small-angle X-ray scattering (SAXS) on a short time scale. SAXS curves for PFOS and OTMS have been interpreted as arising from mass fractals with D f=2 (PFOS) and D f=1.7 (OTMS). The time dependence of the apparent radius of gyration, obtained from the Guinier plots, showed that the growth of fractal precursors occurs in a two-step process within 2 h for PFOS and within 1.5 h for OTMS, in which small clusters involving monomers, dimers and trimers are formed in the initial step and formation of larger clusters occurs in the second step. Furthermore, it has been suggested that the hydrophobicity and lipophobicity of the bulky alkyl groups may also contribute to the formation of these giant aggregates. Received: 13 July 1999/Accepted in revised form: 6 October 1999  相似文献   

6.
Polymeric membranes are used in industrial and analytical separation techniques. In this study small-angle X-ray scattering (SAXS) with synchrotron radiation has been applied for in-situ characterisation during formation of polymeric membranes. The spinning of a polyetherimide (PEI) hollow fibre membrane was chosen for investigation of dynamic aggregation processes during membrane formation, because it allows the measurement of the dynamic equilibrium at different distances from the spinning nozzle. With this system it is possible to resolve structural changes in the nm-size range which occur during membrane formation on the time-scale of milliseconds. Integral structural parameters, like radius of gyration and pair-distance distribution, were determined. Depending on the chosen spinning parameters, e.g. the flow ratio between polymer solution and coagulant water, significant changes in the scattering curves have been observed. The data are correlated with the distance from the spinning nozzle in order to get information about the kinetics of membrane formation which has fundamental influence on structure and properties of the membrane.  相似文献   

7.
Kuroiwa  Y.  Aoyagi  S.  Sawada  A.  Ikawa  H.  Yamashita  I.  Inoue  N.  Atake  T. 《Journal of Thermal Analysis and Calorimetry》2002,69(3):933-938
The crystal structures of BaTiO3 and PbTiO3 fine particles have been investigated by powder diffraction using synchrotron radiation high energy X-rays. It is revealed that a BaTiO3 fine particle essentially consists of tetragonal and cubic structure components at 300 K, whereas a PbTiO3 fine particle consists of a tetragonal structure. Adopting a structure model for the BaTiO3 particle that a cubic shell covers a tetragonal core, the thickness of cubic BaTiO3 shell is estimated at almost constant irrespective of particle sizes. Successive phase transitions are detected in 100 nm particles of BaTiO3 near the phase-transition temperatures of a bulk crystal. The changes in diffraction profiles are small, but they are apparent for a most up-to-date powder diffractometry. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Hydrothermal synthesis process of tobermorite (5CaO·6SiO2·5H2O) has been investigated by in-situ X-ray diffraction using high-energy X-rays from a synchrotron radiation source in combination with a purpose-build autoclave cell. Dissolution rates of quartz were largely affected by its particle size distribution in the starting mixtures. However, the composition (Ca/Si) of non-crystalline C-S-H at the start of tobermorite formation was identical regardless of the quartz dissolution rate. An effect of water-to-solid ratio (w/s) was investigated for samples using fine particle quartz. Tobermorite did not occur with w/s of 1.7 but occurred with w/s higher than 3.0. Surprisingly, however, the dissolution curves of quartz were nearly identical for all samples with w/s from 1.7 to 9, indicating that the dissolution rate is predominated by surface area. Possible reaction mechanism for tobermorite formation will be discussed in terms of Ca and/or silicate ion concentration in the liquid phase and distribution of Ca/Si in non-crystalline C-S-H.  相似文献   

9.
Neutron diffraction studies, especially with powders, play an important role in structural solid-state chemistry, making possible the precise determination of the location of light atoms, particularly hydrogen, and enabling a distinction to be made between certain neighboring elements in the periodic table that are difficult to distinguish in experiments with X-rays. Neutron diffraction investigations also make a unique contribution in the area of magnetic structure determination. The availability of intense synchrotron X-rays sources, however, is opening up new opportunities to the structural chemist, many of them complementary to the “traditional” strengths of neutron methods. The key features of synchrotron radiation in relation to structural studies are the wavelength tunability, which facilitates the use of resonant diffraction methods, and the high brightness and excellent vertical collimation of the source, which make possible the construction of diffractometers with unparalleled angular and spatial resolution. The following types of experiments are now possible with synchrotron X-ray diffraction: (1) The ab initio determination of structures from powder diffraction data. (2) The differentiation between different oxidation states of an element (valence contrast experiments) based upon the sensitivity of an absorption edge to the valence of the element in question. (3) The differentiation of elements adjacent to each other in the periodic table, which is now feasible with synchrotron X-rays for all elements beyond chromium. (4) Site-selective X-ray absorption spectroscopy. (5) The study of cation occupancies in materials where more than one element occupies a site that is, or may be, partially occupied. (Such problems are important in zeolite chemistry and high-temperature superconductors.) (6) The determination of crystal structures from microcrystals. (7) In situ and rapid, time-resolved diffraction studies. This review examines the roles played by X-ray and neutron diffraction studies in modern solid-state chemistry, and describes some recent examples in which the use of neutron radiation or synchrotron X-rays has been advantageous.  相似文献   

10.
We have studied CaWO4 under compression using Ne as pressure-transmitting medium at room temperature by means of synchrotron X-ray powder diffraction. We have found that CaWO4 beyond 8.8 GPa transforms from its low-pressure tetragonal structure (scheelite) into a monoclinic structure (fergusonite). The high-pressure phase remains stable up to 28 GPa and the low-pressure phase is totally recovered after full decompression. The pressure dependence of the unit-cell parameters, as well as the pressure–volume equation of state, has been determined for both phases. Compared with previous studies, we found in our quasi-hydrostatic experiments a different behavior for the unit-cell parameters of the fergusonite phase and a different transition pressure. These facts suggest that deviatoric stresses influence on the high-pressure structural behavior of CaWO4 as previously found in related compounds. The reported experiments also provide information on the pressure dependence of interatomic bond distances, shedding light on the transition mechanisms.  相似文献   

11.
The hydrothermal synthesis of nanocrystalline ZnSe has been studied by in situ X-ray powder diffraction using synchrotron radiation. The formation of ZnSe was studied using the following starting mixtures: Zn+Se+H2O (route A) and ZnCl2+Se+H2O+Na2SO3 (route B). The route A experiment showed that Zn powder starts reacting with water at 134 °C giving ZnO and H2 followed by the formation of ZnSe which takes place in temperature range from 167 to 195 °C. The route B experiment shows a considerably more complex reaction path with several intermediate phases and in this case the formation of ZnSe starts at 141 °C and ZnSe and Se were the only crystalline phases observed at the end of the experiment where the temperature was 195 °C. The sizes of the nanocrystalline particles were determined to 18 and 9 nm in the route A and B experiments, respectively. Nanocrystalline ZnSe was also synthesized ex situ using the route A and B methods and characterized by conventional X-ray powder diffraction and transmission electron microscopy. An average crystalline domain size of ca. 8 nm was determined by X-ray powder diffraction in fair agreement with TEM images, which showed larger aggregates of nanoparticles having approximate diameters of 10 nm. Furthermore, a method for purification of the ZnSe nanoparticles was developed and the prepared particles showed signs of anisotropic size broadening of the diffraction peaks.  相似文献   

12.
以间规1,2-聚丁二烯(s-PB)为研究对象,通过原位同步辐射小角X射线散射(SR-SAXS)和广角X射线衍射(WAXD)研究其结晶结构的变化过程.SR-SAXS曲线中存在明显的散射峰,表明在等温结晶过程中形成有序结晶结构;在等温结晶后间规1,2-聚丁二烯的片晶厚度、微晶尺寸均正比于1/Tc∞-T,根据高分子结晶中介相机理可以做出合理的解释.  相似文献   

13.
通过原位高压拉曼光谱和X射线衍射对ZnNb2O6晶体在29 GPa以下的结构转变进行了研究.拉曼光谱显示, 多数拉曼峰强度减弱, 且随着压力增加向高波数方向移动.压力频移曲线分别在10, 16 和20 GPa处形成了拐点.原位X射线衍射谱在10.6 GPa以上有旧峰消失和新峰出现.结果分析表明, ZnNb2O6钶铁矿结构压缩过程中发生了一个可逆压致相变, 此相变从10 GPa左右开始, 到16 GPa左右完成, 继续增加压力到20 GPa以上则形成无序状态.  相似文献   

14.
In this article, the capabilities of soft and hard X-ray techniques, including X-ray absorption (XAS), soft X-ray emission spectroscopy (XES), resonant inelastic soft X-ray scattering (RIXS), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD), and their application to solid-state hydrogen storage materials are presented. These characterization tools are indispensable for interrogating hydrogen storage materials at the relevant length scales of fundamental interest, which range from the micron scale to nanometer dimensions. Since nanostructuring is now well established as an avenue to improve the thermodynamics and kinetics of hydrogen release and uptake, due to properties such as reduced mean free paths of transport and increased surface-to-volume ratio, it becomes of critical importance to explicitly identify structure-property relationships on the nanometer scale. X-ray diffraction and spectroscopy are effective tools for probing size-, shape-, and structure-dependent material properties at the nanoscale. This article also discusses the recent development of in-situ soft X-ray spectroscopy cells, which enable investigation of critical solid/liquid or solid/gas interfaces under more practical conditions. These unique tools are providing a window into the thermodynamics and kinetics of hydrogenation and dehydrogenation reactions and informing a quantitative understanding of the fundamental energetics of hydrogen storage processes at the microscopic level. In particular, in-situ soft X-ray spectroscopies can be utilized to probe the formation of intermediate species, byproducts, as well as the changes in morphology and effect of additives, which all can greatly affect the hydrogen storage capacity, kinetics, thermodynamics, and reversibility. A few examples using soft X-ray spectroscopies to study these materials are discussed to demonstrate how these powerful characterization tools could be helpful to further understand the hydrogen storage systems.  相似文献   

15.
Since its observation in 1985, nuclear resonance scattering of synchrotron radiation has become an excellent tool to study hyperfine interactions as well as dynamical effects in solids. It has proven to be a complementary method to Mössbauer spectroscopy. Nuclear resonance scattering combines the advantages of both local probe experiments and scattering techniques. It gives valuable information as well on electronic and magnetic structures and on dynamics in solids. Experiments benefit from the high beam quality of third-generation synchrotron radiation sources, as the small beam size and divergence. Besides the standard isotope 57Fe, other Mössbauer isotopes have become more important in nuclear resonant scattering of synchrotron radiation. This article concentrates on the 151Eu isotope.  相似文献   

16.
A novel aluminium rich alloy for hydrogen storage has been discovered, ScAl0.8Mg0.2, which has very promising properties regarding hydrogen storage capacity, kinetics and stability towards air oxidation in comparison to hydrogen absorption in state-of-the-art intermetallic compounds. The absorption of hydrogen was found to be very fast, even without adding any catalyst, and reversible. The discovered alloy crystallizes in a CsCl-type structure, but decomposes to ScH2 and Al(Mg) during hydrogen absorption. Detailed analysis of the hydrogen absorption in ScAl0.8Mg0.2 has been performed using in situ synchrotron radiation powder X-ray diffraction, neutron powder diffraction and quantum mechanical calculations. The results from theory and experiments are in good agreement with each other.  相似文献   

17.
Real time temperature dependence of X-ray diffraction patterns and infrared spectra for nylon 65, a representative polymer of the even-odd nylon series, was studied. A particular structure based on the establishment of two hydrogen-bonding directions had previously been postulated for this polymer. Therefore, the determination of its temperature-induced transitions is a relevant topic. Results indicate that nylon 65 undergoes a reversible Brill transition at high temperature, leading to a pseudohexagonal chain axis projected unit cell. Furthermore, this polyamide shows a polymorphic transition around 100 °C which is not completely reversible on cooling.Crystallization of nylon 65 was also analyzed by simultaneous WAXD and SAXS synchrotron radiation experiments to determine the evolution of the degree of crystallinity and morphological parameters on cooling. Optical microscopy studies were also performed under isothermal and non-isothermal conditions to distinguish the different spherulitic morphologies. Results reveal that the optical properties of nylon 65 spherulites are different from those of conventional even-even nylon spherulites. Multiple melting peaks associated with lamellae of different thicknesses were observed in the calorimetric heating scan of melt-crystallized samples.  相似文献   

18.
The spin density of Heusler alloy Co2FeGa, has been studied using the Compton scattering technique with 274 keV circularly polarized synchrotron radiation in the high energy inelastic scattering beamline (BL08W), at SPring-8, Japan. The magnetic Compton profiles along the two principal directions [1 1 0] and [1 1 1] were measured. The spin profiles shows a good agreement with our FLAPW-GGA results, where the theoretical results were based on the ferromagnetic ground state. The 3d spin moment at the Co and the Fe site was found to be in excellent agreement with the earlier reported neutron diffraction measurements.  相似文献   

19.
Suspensions of triglyceride nanoparticles have been proposed as carrier systems for intravenous administration of poorly water soluble drugs. Such nanosuspensions can easily be produced by homogenization of the melted triglyceride in an aqueous phase. Using special emulsifier blends it is possible to obtain suspensions with an average size of the recrystallized particles below 100 nm (photon correlation spectroscopy z-average). As can be observed by transmission electron microscopy the particles are very thin platelets with thicknesses in the range of only a few molecular layers. Nanoparticles of saturated monoacid triglycerides (smaller than 200 nm) exhibit uncommon melting behaviour, which is expressed in their differential scanning calorimetry curve by multiple endothermal peaks over a temperature range of about 10 °C. This effect was attributed earlier to the particle thickness distribution in the suspension rather than to polymorphic transitions since all the material exists in the stable β modification. Here we present experimental investigations on the correlation between the melting behaviour of trilaurin nanosuspensions and the particle thickness distribution determined by analysis of difference X-ray diffraction patterns recorded at progressively higher temperatures in the melting range of the particles. Because of the weak X-ray scattering of the systems investigated synchrotron radiation was used besides conventional sources. The Fourier analysis of the difference diffraction patterns is described in detail and the advantages and difficulties in using this method are discussed. It was observed that the melting temperatures of the nanoparticles increase with increasing particle thicknesses. Simultaneously a decrease in the interplanar (001) spacing with increasing particle thickness was found. Received: 27 July 1999 Accepted: 5 October 2000  相似文献   

20.
Until recently, items of cultural heritage significance have been studied only using laboratory-based techniques. Improvements in the design of synchrotron radiation sources have made it possible to undertake experiments on objects of cultural heritage experience which had hitherto been impossible. Experimental techniques used in conservation science studies range from infrared microscopy to X-ray diffraction and fluorescence (both micro- and macro-diffraction), to small and wide angle X-ray scattering (SAXS/WAXS) (both micro- and macro-scattering). Here, we describe studies of important artefacts held by Australian national collecting agencies using both laboratory- and synchrotron-based analytical techniques and particle beam X-ray emission (PIXE). As well, a new technique for studying easel paintings, hyperspectral imaging, will be introduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号