共查询到18条相似文献,搜索用时 78 毫秒
1.
新疆南疆是全国杏种植面积最大的地区,杏品种繁多。在杏果品市场中,不同品种杏的品质和价格差异较大,以次充好、品质参差不齐等现象严重制约了新疆杏果业的发展。为探究利用可见/近红外光谱快速检测杏品种的可行性,基于样品的可见/近红外光谱与化学计量学方法,对新疆南疆地区的6个品种杏进行定性判别分析,建立一种杏品种的无损鉴别方法。采用光谱仪采集6个品种杏(“黄杏”、“橄榄杏”、“小白杏”、“小米杏”、“库买提杏”、“小吊干杏”)在350~1 000 nm(VIS/NIR)和1 000~2 500 nm(NIR)两个范围内的光谱数据,去除原始光谱首端的噪声后,对保留的光谱使用Savitzky-Golay(SG)卷积平滑和多元散射校正(MSC)处理以消除光谱存在的干扰信息,采用主成分分析(PCA)、竞争性自适应重加权算法(CARS)、随机蛙跳(RF)、连续投影算法(SPA)对原始光谱降维,结合线性判别法(LDA)、朴素贝叶斯(NB)、 K最近邻(KNN)和支持向量机(SVM)对全光谱和降维后光谱建模对比。结果表明:基于全光谱数据建立的模型有较为准确的分类结果,在VIS/NIR范围,SVM模型分类正确率... 相似文献
2.
一种基于可见-近红外光谱快速鉴别茶叶品种的新方法 总被引:26,自引:11,他引:26
提出了一种用可见-近红外光谱技术快速无损鉴别茶叶品种的新方法。应用可见-近红外光谱仪测定5个品种茶叶的光谱曲线,用主成分分析法对不同品种茶叶进行聚类分析并获得茶叶的可见-近红外光谱数据的主成分,再结合人工神经网络技术建立模型进行品种鉴别。主成分分析表明,以主成分1和2对所有建模样本的得分值做出的得分图,对不同种类茶叶具有较好的聚类作用,可以定性分析茶叶种类。把主成分分析得到的前6个主成分作为神经网络的输入,茶叶品种值作为神经网络的输出,通过5个茶叶品种共125个样本的训练和学习,建立了茶叶品种鉴别的3层BP人工神经网络模型,对未知的25个样本进行鉴别,品种识别准确率达到100%。说明本文提出的方法具有很好的分类和鉴别作用,为茶叶的品种快速鉴别提供了一种新方法。 相似文献
3.
可见/近红外光谱分析技术鉴别转基因番茄叶 总被引:6,自引:0,他引:6
用可见/近红外光谱(Vis-NIR spectrum)漫反射方式对转基因番茄叶和非转基因番茄叶进行了快速、无损的定性分析。实验共对68个样品(转基因38个,非转基因30个)进行分类,用TQ 6.2.1光谱分析软件中集成的判别分析(Discriminant analysis)和偏最小二乘回归法(PLS)建立校正和预测模型。研究对比了不同光谱预处理方法(微分处理和多元散射校正(MSC))对分类结果的影响。实验结果发现用判别分析较最小二乘法判别结果较好,用InGaAs检测器获得的光谱经MSC后的分类结果最好,分类正确率为89.7%(转基因番茄叶86.8%,非转基因番茄叶93.3%)。结果表明VIS-NIR可以作为一种快速的无损检测方法鉴别转基因和非转基因番茄叶。 相似文献
4.
应用可见/近红外光谱进行黄酒品种的判别 总被引:3,自引:2,他引:3
为了实现对黄酒品种的快速判别,采用可见/近红外光谱对不同品种的黄酒获取光谱曲线,然后采用主成分分析方法对光谱数据进行聚类分析,并将其提取的主成分作为BP神经网络的输入值,建立了黄酒品种鉴别模型。该模型将前6个主成分作为神经网络的输入变量,加速了神经网络的学习速度,提高了模型的预测精度。随机选取每个品种的15个黄酒样本,共45个样本组成预测集,剩余的145个黄酒样本组成训练集建立训练模型,并用预测集样本对其进行验证。将品种鉴别的偏差标准定为±0.1,结果表明,只有1个未知样本超出偏差范围,该方法的品种鉴别正确率为97.78%,获得了满意的结果。说明文章提出的方法具有很好的分类和鉴别作用,为黄酒品种的快速鉴别提供了一种新方法。 相似文献
5.
应用可见/近红外光谱进行纺织纤维鉴别的研究 总被引:2,自引:0,他引:2
为了实现纤维种类的快速鉴别,选用了棉、麻、毛、丝、天丝5种纤维,提出了一种用近红外光谱技术快速无损鉴别纤维品种的新方法。应用可见/近红外光谱漫反射技术测定各种纤维的光谱曲线,用主成分分析方法(PCA)对光谱数据进行模式特征分析,根据主成分的累积贡献率选用前6个主成分数进行建模和预测,通过建立最小二乘支持向量机模型(LS-SVM)对主成分分析模型进行优化,将前6个主成分作为最小二乘支持向量机的输入变量,建立PCA-LS-SVM模式识别模型,实现类别预测的同时也完成了数学建模与优化分析工作。5个品种的纤维训练集样本200个用于PCA-LS-SVM的模型的建立,对其余预测集样本50个进行验证,结果能准确的区分预测集的5种纤维。并提出主成分分析结合最小二乘支持向量机的光谱数据分析方法具有很好的分类和鉴别作用,为纤维品种快速鉴别提供了一种新方法,为维护消费者权益,保证纺织品质量,实现纺织原料及其制品的合理化生产与交易具有重要的意义。 相似文献
6.
对藻类的识别分类及其生化分析已成为海洋生物学的研究热点之一。以普通小球藻、蛋白核小球藻、微绿球藻、莱茵衣藻为样品,通过便携式USB4000微型光纤光谱仪、Y形光纤和探针,卤素光源构建的光谱采集系统对不同浓度梯度的120个微藻样本进行浸入式可见/近红外透射光谱的原位采集,比较去基线、卷积平滑等光谱预处理方法的效果,并基于连续投影算法(SPA)筛选特征波长,通过偏最小二乘法(PLS)、最小二乘支持向量机(LS-SVM)和极限学习机(ELM)进行建模,探讨采用透射光谱原位快速鉴别四种不同藻种的可行性。结果表明:卷积平滑的处理效果较为理想,有效波长可用于代替原始光谱建立微藻种类判别分析模型。SPA-LV-SVM和SPA-ELM的预测效果显著高于SPA-PLS,三者的平均预测正确率分别是80%,85%,65%。浸入式可见/近红外光谱技术和便携式光纤探针结合的藻种鉴别方法,有效实现了对四种微藻的鉴别,为藻种鉴别和藻种分类研究领域提供了一种新思路。 相似文献
7.
在种鸡蛋孵化过程中,部分种蛋由于未受精不能正常出雏,不但会造成大量浪费,还有可能引起霉菌感染其他种蛋,利用可见/近红外透射光谱分析技术可以对种鸡蛋中的受精蛋和无精蛋进行检测。为研究孵化初期无精蛋最佳的判别时间,本文通过对孵化环境下种鸡蛋品质随时间变化的研究,最终发现在孵化24h内的种鸡蛋品质还在新鲜状态,在72h后的种鸡蛋品质变为不可食用级别,最终发现36h内是最佳的判别时间。研制了基于可见/近红外透射光谱的静态采集系统,并使用该系统进行了光谱采集。对比同一品种不同样品及不同品种的光谱建模效果,剔除了由蛋黄与蛋壳颜色造成的样本光谱差异区域,选取的有效光谱波段为355~590和670~1 025nm。采用主成分分析法进行预处理,通过不同时间、不同主成分数建模效果的比较,确定最佳的主成分数。同时采用多元散射校正、附加散射校正、导数校正与主成分分析的光谱预处理方法在不同的建模方法下进行对比,并考虑到实际应用与最终的生产效益,建立了有效的判别模型。最佳判别模型为使用24h时采集光谱且采用主成分分析法进行数据预处理并使用Fisher算法建立的模型,判别准确率能达到87.18%。该研究为早期受精蛋与无精蛋的无损伤在线鉴别提供了一种新的方法。 相似文献
8.
基于独立组分分析和BP神经网络的可见/近红外光谱蜂蜜品牌的鉴别 总被引:7,自引:2,他引:7
提出了一种基于独立组分分析的可见/近红外光谱透射技术快速鉴别蜂蜜品牌的新方法。用独立组分分析方法获取蜂蜜的可见/近红外光谱载荷图,将载荷图中相关性最大的波段,作为人工神经网络的输入建立蜂蜜品牌的鉴别模型。建立了一个三层的BP神经网络模型,各层传递函数采用S型(Sigmoid)函数,并设置网络输入层节点数为9,隐含层节点数为10,输出层节点数为3。每个品牌25个样本,3个品牌共75个样本,用来建立BP神经网络模型,剩余的3个品牌各5个样本用于预测,鉴别准确率达100%,模型的拟合残差为8.245 365×10-5。说明基于独立组分分析的方法具有很好的鉴别效果,为蜂蜜的品牌鉴别提供了一种新方法。 相似文献
9.
基于可见-近红外光谱分析技术,提出了一种快速鉴别马铃薯品种的方法。以三种不同品种共计352个样本的马铃薯作为主要研究对象,随机将其分为建模集(307个样本)和预测集(45个样本)。对其中的建模集样品进行可见-近红外光谱分析,将获取的光谱图像通过多元散射校正(MSC)和窗口大小为9的Savitzky-Golay(S-G)一阶卷积求导方法预处理,消除颗粒大小、表面散射及光程变化对漫反射光谱影响,降低原始光谱曲线的随机噪声影响。然后用偏最小二乘法(PLS)对数据进行降维、压缩,使用主成分分析方法(PCA)获得的前4个主成分累计贡献率达到96%以上,并从前4个主成分图谱中提取20个吸收峰作为输入变量,经过试验,得到一个20(输入)-12(隐含)-3(输出)结构的3层BP神经网络。最后利用该模型对预测集样本进行品种鉴别,识别正确率达到100%。此方法能较为快速、准确地鉴别马铃薯的品种,为马铃薯品质检测与鉴别提供了新思路。 相似文献
10.
基于可见-近红外反射光谱技术的葡萄品种鉴别方法的研究 总被引:2,自引:0,他引:2
提出一种利用可见-近红外反射光谱技术快速无损鉴别葡萄品种的新方法.采用主成分分析法对三个葡萄品种的光谱进行聚类分析.结果表明, 黑提葡萄能够被区分.进一步采用人工神经网络技术对马奶子和木拉格两种葡萄进行品种鉴别.以前10个主成分作为神经网络的输入, 品种类型作为神经网络的输出, 建立三层BP神经网络模型.结果显示, 这两个品种的识别准确率达到98.28 %, 结果优于簇类独立软模式(SIMCA).同时提出葡萄品种鉴别的四个敏感波段: 452、493、542和668 nm.基于敏感波段光谱的BP神经网络预测准确率为97.41%.说明采用可见-近红外光谱分析技术结合主成分分析和人工神经网络的方法能够快速无损鉴别葡萄的品种, 为葡萄品种的鉴别提供了一种新方法. 相似文献
11.
土壤全氮田间Vis/NIR光谱测定方法研究 总被引:1,自引:0,他引:1
应用Vis/NIR光谱直接测定原始土壤属性具有重要的研究和应用价值。选取我国中部水稻土和潮土共103个土样,对比分析了两种土壤在田间环境下的湿态(Rw)和干态(Rd)光谱特征。采用相对变换光谱方法对湿态光谱进行了处理,结果表明该方法能够有效降低土壤水分的干扰和消除部分噪声,得到的变换光谱(Rn)与干态光谱在信息量和特征方面具有很高的相似度。以此建立了土壤TN的PLS回归估计模型,检验结果表明,Rn对水稻土和潮土TN的估计模型精度均高于Rw,修正判定系数分别从0.26和0.46提高到0.53和0.62。因此,相对光谱变换方法能够有效提高应用田间土壤光谱估计土壤参数的能力,建立的PLS模型可以用于测定TN含量,研究结果可作为实现田间实时分析土壤属性的工作基础。 相似文献
12.
应用可见-近红外光谱技术进行白醋品牌和pH值的快速检测 总被引:2,自引:0,他引:2
提出了一种基于可见-近红外透射光谱技术快速判别白醋品牌和测定pH值的方法。应用可见-近红外透射光谱获取不同品牌白醋的透射光谱曲线,并对获得的原始光谱数据进行平滑、变量标准化以及一阶导数等预处理,然后利用主成分分析对原始光谱数据进行聚类分析,根据主成分的累计贡献率选取主成分数,并将所选取的主成分作为三层BP神经网络的输入。通过定标集样本对BP神经网络进行训练,得到三层优化神经网络结构:5输入层节点,6隐含层节点和2输出层节点,各层传递函数均采用Sigmoid函数。利用该模型对预测集样本进行预测。实验结果表明在阈值设定为±0.1的情况下该模型对预测集样本品牌鉴别准确率达到了100%,pH预测值与实际测量值偏差小于5%,得到了理想的结果。所以利用可见-近红外光谱技术结合主成分分析和神经网络算法能够快速准确的判定白醋品牌和pH值。 相似文献
13.
利用反向区间偏最小二乘法(BiPLS)定位光谱糖度若干信息区间,运用遗传算法(GA)从中选择波长点,建立了多元线性回归(MLR)模型。光谱进行卷积平滑和二阶导数处理后,将光谱(225个数据点)分割成25个子区间时,BiPLS优化结果最优。在所定位的信息区间进行GA二次选择特征变量,运行100次依次选择入选频率较高的12个波长点。为简化MLR模型,对于入选的相邻波长选择频率较高者,最后选择 638,734,752,868,910,916和938 nm作为回归变量,建立的MLR预测模型相关系数(R2)、校正均方根误差(RMSEC)和预测均方根误差(RMSEP)分别为0.984,0.364和0.471,优于常用的逐步多元线性回归的建模结果。表明BiPLS结合GA可以有效地对李子糖度可见/近红外光谱MLR回归变量进行筛选,提高了模型的精度。 相似文献
14.
基于主成分分析和支持向量机的山羊绒原料品种鉴别分析 总被引:1,自引:0,他引:1
提出了一种用近红外光谱技术快速无损鉴别羊绒原料品种的新方法。山羊绒的外观形态和品质特征随着山羊绒原料的品种不同有很大的区别,快速、有效、正确地鉴别山羊绒纤维,对山羊绒及其制品的生产与交易具有重要的意义。应用可见/近红外光谱漫反射技术测定各种山羊绒原料的光谱曲线,用主成分分析法对不同品种山羊绒原料进行聚类分析并获取山羊绒原料的近红外指纹图谱,再结合支持向量机技术进行品种鉴别。用主成分1,2和3对所有建模样本的得分值做出的得分图,分析聚类效果,将主成分分析得到的10个主成分作为支持向量机的输入,应用数据挖掘新方法—支持向量机对山羊绒原料品种进行鉴别。通过对5个山羊绒原料品种共100个样本的训练,对未知的75个样本进行鉴别,建立了山羊绒原料品种鉴别的支持向量机的分类模型,并对比了四种核函数的支持向量机的分类性能,结果表明,具有高斯核函数的支持向量机对山羊绒原料的鉴别准确率达到100%。说明文章提出主成分分析结合支持向量机的数据挖掘方法具有很好的分类和鉴别作用,为山羊绒原料的品种快速鉴别提供了一种新方法。 相似文献
15.
可见/近红外光谱漫透射技术检测西瓜坚实度的研究 总被引:3,自引:3,他引:3
西瓜是一种广受世界各国消费者喜爱的水果,坚实度是西瓜的一个重要品质指标,文章利用可见/近红外漫透射光谱技术进行了西瓜坚实度(FM)的无损检测研究。采用偏最小二乘法(PLS)和主成分回归法(PCR)建立了FM与漫透射光谱的无损检测数学模型,对比分析了不同光谱预处理方法(原始光谱%T,一阶微分处理光谱D1(%T ),二阶微分处理光谱D2(%T )以及光谱的Savitsky-Golay法滤波)对模型预测性能的影响。根据模型相关系数(r)及预测平方根标准偏差(RMSEP)进行了不同模型的预测性能对比,结果表明:光谱经二阶微分处理并使用Savitsky-Golay法滤波后,采用PLS法可以得到最好的FM建模结果(r=0.974,RMSEP=0.589 N)。研究表明:应用可见/近红外漫透射光谱技术检测西瓜的坚实度是可行的,为今后快速无损评价大果形厚果皮类水果坚实度提供了理论依据。 相似文献
16.
基于近红外反射光谱的外来入侵植物的辨识 总被引:1,自引:0,他引:1
提出了一种利用可见一近红外反射光谱技术对婆婆纳、波斯婆婆纳、直立婆婆纳等3种入侵植物和本地杂草宝盖草的植物辨别方法,可以对外表相似度极高的这4种植物进行有效鉴别.研究在对光谱曲线进行预处理和聚类分析后,随机采用30×4个样本作为建模样本,其余的20×4个样本作为预测样本,应用独立软模式法SIMCA(soft independent models of class analogy)进行分类,在显著性水平为5%下,其预测分辨率为78.75%,去除婆婆纳后的预测分辨率为90%.根据变量建模能力(modeling power)值,找到敏感波段496~521,589~626和789~926 nm,并将相应的波段的光谱值作为最小二乘的支持向量机LS-SVM(least squares support vector machine)的输入,进行建模预测,并以预测结果作为目标函数值,进行遗传算法GA(genetic algorithm)优化,结果发现,预测分辨率达95.35%,辨识效果好,能快速正确区分外来入侵植物. 相似文献
17.
基于光谱和神经网络模型的作物与杂草识别方法研究 总被引:2,自引:1,他引:2
利用光谱技术来识别作物与杂草是精细农业中一个非常重要的研究内容,但光谱数据中含有大量冗余数据,如何预处理以及建立识别模型,是决定识别准确率的关键。利用在325~1 075 nm波段的光谱识别了三种杂草(牛筋草、凹头苋、空心莲子草)与大豆幼苗。在幼苗生长的第三周与第六周分别采集杂草与作物的光谱,共378个样本。用其中的250个光谱样本,包括第一期和第二期采集的光谱样本,在采用db12小波经过三层分解后,将其小波系数作为输入数据建模,构造了一个径向基函数神经网络。然后,利用余下的光谱样本检验该模型的识别能力。结果表明,该模型对作物与杂草光谱具有极强的识别能力,只有3个第二期的牛筋草样本被判断为空心莲子草,其余的样本全部正确识别。这个结果表明,采用可见/近红外光谱识别大豆幼苗与三种伴随生长的杂草是可行的,同时也说明,随着作物的生长阶段的不同,其光谱的变化不会影响到种类识别。 相似文献
18.
可见-近红外光谱用于鉴别山羊绒与细支绵羊毛的研究 总被引:3,自引:1,他引:2
近红外光谱作为快速、无损的检测技术,近年来在国内外越来越受到广泛关注。针对山羊绒与细支绵羊毛的可见/近红外光谱的特点,提出了应用主成分分析(PCA)结合人工神经网络(ANN)进行山 羊绒与细支绵羊毛的鉴别,并建立了羊毛、羊绒分析模型。应用可见/近红外反射光谱获取山羊绒与细支绵羊毛的光谱曲线,利用主成分分析对原始光谱数据进行处理,根据主成分的累计贡献率99.8%选 取主成分数6,并将所选取的6个主成分作为三层BP神经网络的输入。通过定标集样本对BP神经网络进行训练,用优化的BP神经网络模型对预测集样本进行预测。实验结果表明,16个未知样本的鉴别全部 正确,表明可见/近红外光谱结合主成分分析和神经网络技术对山羊绒与细支绵羊毛进行快速鉴别是可行的。 相似文献