首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Polymer-induced heteronucleation was utilized for the selective crystallization of the color polymorphic platinum complexes Pt(bpy)Cl2 and Pt(phen)Cl2. Crystal structures of two polymorphs of Pt(phen)Cl2 were determined and reveal that, as in the case of Pt(bpy)Cl2, this compound has one form with Pt...Pt interactions (orange crystals) and another lacking these contacts (yellow crystals). Free energy measurements reveal that the polymorphs of Pt(bpy)Cl2 and Pt(phen)Cl2 without Pt...Pt interactions are more stable in both cases by 0.67(2) and 0.53(1) kJ/mol, respectively, and this finding is consistent with the principle of close packing. Furthermore, a search of the Cambridge Structural Database reveals that, for polymorphic platinum complexes, shorter intermolecular Pt...Pt interactions generally result in less dense structures.  相似文献   

2.
以La-Al2O3(La稳定的γ-Al2O3)、Ce0.63Zr0.37O2(OSM1)及Ce0.5Zr0.3Mn0.2O2(OSM2)为载体, Pt为活性组分, 制备了Pt质量分数为1%的整体式催化剂. 研究了不同载体负载的催化剂对CH4选择催化还原NO反应的性能, 并利用XRD、H2-TPR和XPS对催化剂进行了表征. 结果表明, Pt/OSM1和Pt/OSM2催化剂在氧含量为0.8%时对CH4催化还原NO具有优异的净化性能, Pt/OSM1催化剂上500 ℃时, CH4和NO均达到100%转化; Pt/OSM2催化剂上500 ℃时, CH4和NO的转化率分别达到73%和100%; 而 Pt/ La-Al2O3催化剂只在O2含量较低时(0.4%以下)具有较好活性, 500 ℃以上才可使CH4和NO完全转化. H2-TPR结果表明, Pt与OSM1和OSM2存在的相互作用导致低温还原物相生成. Pt与OSM的相互作用及OSM的储氧性能使催化剂在过量氧存在下对CH4催化还原NO具有优异性能.  相似文献   

3.
任红艳 《分子催化》2015,29(2):173-178
通过水热法合成棒状纳米Ce O2(Ce O2-R),并将Pt纳米颗粒负载于Ce O2表面,制得甲醇燃料电池的阳极催化剂Pt/Ce O2-R.通过结构与形貌表征,结果表明,Pt/Ce O2-R中Ce O2的暴露晶面为(111)和(002)晶面,改变了Pt周围的电子结构,进而降低了Pt-COads的键能,释放出更多的活性位.另外,Pt纳米颗粒在Ce O2-R表面分散更均匀.利用电化学工作站测试阳极催化剂Pt/Ce O2-R在酸性溶液中的电化学性能,证明Pt/Ce O2-R催化剂的甲醇电氧化性能与抗CO毒害能力较颗粒状Ce O2负载Pt催化剂(Pt/Ce O2-P)都有很大的提高,证明Ce O2-R作为Pt纳米颗粒的载体用于直接甲醇燃料电池的阳极反应具有发展潜力.  相似文献   

4.
采用电沉积-置换法在Ti片上制备了染料敏化太阳能电池(DSSC)的对电极Pt/Ti. 形貌表征结果显示, 与传统热解法制备的Pt/FTO对电极相比, Pt/Ti对电极Ti基底上Pt催化颗粒的粒径和分散性得到显著改善. 光电流-光电压特性曲线测试结果表明, 以Pt/Ti为对电极的DSSC与以Pt/FTO为对电极的DSSC相比, 光电转化效率提高了20.8%. 由于Pt颗粒分散性和粒径的改善所引起的Pt催化性能的提高、 Pt/Ti对电极更低的电阻以及Ti基底更好的反光性能是提升DSSC性能的原因.  相似文献   

5.
The adsorption of C60 on a Pt(111) surface and the origins of the √13 × √13R13.9° or 2√3 × 2√3R30° reconstruction of the C60/Pt(111) system have been investigated by means of first-principles calculations. In agreement with the experimental observations, our calculations reveal that the C60 molecule binds covalently on the Pt(111) surface. The C60 molecule adsorbs on the Pt(111) surface with the center of a hexagonal ring located on top of a surface Pt atom. The surface Pt atom can be removed easily, forming a Pt vacancy upon the adsorption of C60 molecule. Our calculation results show that the strong covalent bonds between C60 and the Pt(111) surface and the formation of adatom-vacancy pairs in the C60/Pt(111) system may be the main driving forces promoting the substrate reconstructing pattern observed in experiments.  相似文献   

6.
The results of X-band EPR, X-ray absorption and Fourier transform infrared spectroscopy on Pt(NH(3))(4)(2+) exchanged NaX, NaY and NaA zeolites reveal after oxygen calcination at 573 K that diamagnetic Pt(2+) is not the only product. Calcination provides Pt(3+) cations, but depending on the heating rate, the decomposition of amino groups during calcination also produces hydrogen that reduces Pt(3+) to Pt(2+) and Pt(+). NaX (Si/Al = 1.23) has a more negative framework charge than NaY (Si/Al = 2.31), so Pt(3+) can be stabilized only in NaX, whereas lower oxidation states of Pt such as Pt(+) can be stabilized in both, NaX and NaY, and neither of the paramagnetic Pt cations are stabilized in NaUSY (Si/Al = 3). The autoreduction process allows controlling the number of Pt(3+) and Pt(+) in the NaX zeolite by changing the calcination heating rate: a heating rate of 1.25 K min(-1) gives only Pt(+), but 0.5 K min(-1) gives a Pt(3+)/Pt(+) ratio close to 1. The structure of the support is also important for the synthesis of Pt species. While isolated paramagnetic Pt ions were stabilized in faujasite zeolites (NaX and NaY), a paramagnetic Pt dimer was obtained in a Linde type A zeolite (LTA, Si/Al = 1) by applying the same preparation methods. The fraction of paramagnetic Pt species which were characterized by X-band EPR spectroscopy amounts to 2-18% of the total Pt in the zeolites, the remaining Pt must be diamagnetic.  相似文献   

7.
The effect of the Al_2O_3 structure on the performance of Pt/Ga/Al_2O_3 catalysts is investigated for the direct dehydrogenation of propane. The study unveils that the structure of Al~(3+)determines the bulk structure of catalysts, particularly a high content of coordinatively unsaturated Al~(3+)sites(penta-coordinated Al~(3+),denoted as Al~(3+)penta) could lead to a remarkably improved dehydrogenation activity of the catalyst. The bulk characterization reveals that the sufficient amount of Al~(3+)pentain Al_2O_3 benefit the dispersion of Pt and Ga_2O_3 on the Al_2O_3 support. At the same time, TPR results reveal that the presence of Pt facilitates the reduction of Ga_2O_3, likely due to the hydrogen spillover between the well dispersed Pt and Ga_2O_3,which consequently enhances the synergistic function between Pt and Ga_2O_3 in the dehydrogenation of propane. Recyclability tests demonstrate that the dehydrogenation activity stabilizes after three cycles over the Pt/Ga/Al_2O_3 catalyst.  相似文献   

8.
Pt/Co‐core Au‐shell nanoparticles were synthesized via a two‐step route using NaBH4 as a reducing agent. The nanoparticles are characterized by UV‐vis spectroscopy, transmission electron microscopy (TEM) and powder X‐ray diffraction (XRD). The results indicate that the as‐synthesized Pt/Co‐core Au‐shell nanoparticles have a disordered face centered cubic (fcc) structure, whereas the annealed Pt/Co‐core Au‐shell nanoparticles exhibit an ordered face centered tetragonal (fct) structure. Superconducting quantum interference device (SQUID) studies reveal that the coercivity of the annealed Pt/Co‐core Au‐shell nanoparticles increases to 510 Oe after heat treatment at 500 °C for 2 h.  相似文献   

9.
A Pt-MoO3/C catalyst,aimed to eliminate the harmful effect of sulfur dioxide(SCb) on the performance of Pt nanoparticles(NPs) for catalysis of oxygen reduction reaction(ORR) in proton exchange membrane fuel cells(PEMFC),is developed and characterized by TEM,XRD and XPS.The results reveal that Pt-MoO3/C catalyst exhibits not only a higher catalytic activity,but also a better SO2 poisoning resistance and a better recovery performance than the commercial Pt/C catalyst does.  相似文献   

10.
This work reports the preparation of a La2O3-modified Pt/TiO2 (Pt/La-TiO2) hybrid through an excess-solution impregnation method and its application for CO2 hydrogenation catalysis. The Pt/La-TiO2 catalyst is characterized by XRD, H2 temperature-programmed reduction (TPR), TEM, X-ray photoelectron spectroscopy (XPS), Raman, EPR, and N2 sorption measurements. The Pt/La-TiO2 composite starts to catalyze the CO2 conversion reaction at 220 °C, which is 30 °C lower than the Pt/TiO2 catalyst. The generation of CH4 and CO of Pt/La-TiO2 is 1.6 and 1.4 times greater than that of Pt/TiO2. The CO2 temperature-programmed desorption (TPD) analysis confirms the strengthened CO2 adsorption on Pt/La-TiO2. Moreover, the in situ FTIR experiments demonstrate that the enhanced CO2 adsorption of Pt/La-TiO2 facilitates the formation of the active Pt–CO intermediate and subsequently boosts the evolution of CH4 and CO. The cycling tests reveal that Pt/La-TiO2 shows reinforced stability for the CO2 hydrogenation reaction because the La species can prevent Pt nanoparticles (NPs) from sintering. This work may provide some guidance on the development new rare-metal-modified hybrid catalysts for CO2 fixation.  相似文献   

11.
Bimetallic Au-Pt nanoparticles have been generated inside a relatively porous SiO2 film matrix by a two-layer (2L) coating methodology. Two overlapping coating layers were deposited on glass substrates from Au- and Pt-doped inorganic-organic hybrid silica sols and air dried at 60 degrees C. The 2L coating assembly was then UV- and followed by heat-treated at 450 and 550 degrees C in air. UV-treatment decomposes AuCl(4)(-) and PtCl(6)(2-) ions in the respective layers and the subsequent heat treatment in air influences the diffusion of Au and Pt nanometals to each other to form bimetallic Au-Pt nanoparticles inside the silica matrix. A UV-visible study showed damping of Au-plasmon after heat treatments. GIXRD and TEM analyses reveal the formation of a partial Au/Pt solid solution with a small fraction of Pt ( approximately 16%), while the major fraction of Pt remains fused with the Au(Pt) solid solution.  相似文献   

12.
A Pt-MoO_3/C catalyst,aimed to eliminate the harmful effect of sulfur dioxide(SCb) on the performance of Pt nanoparticles(NPs) for catalysis of oxygen reduction reaction(ORR) in proton exchange membrane fuel cells(PEMFC),is developed and characterized by TEM,XRD and XPS.The results reveal that Pt-MoO_3/C catalyst exhibits not only a higher catalytic activity,but also a better SO_2 poisoning resistance and a better recovery performance than the commercial Pt/C catalyst does.  相似文献   

13.
The primary route to hydrogen production from fossil fuels involves the water-gas shift (WGS) reaction, and an improvement in the efficiency of WGS catalysts could therefore lead to a major leap forward in the realization of hydrogen economy. On the basis of a combination of high-resolution scanning tunneling microscopy, X-ray photoelectron spectroscopy, and density functional theory (DFT) calculations, we suggest the existence of a new thermodynamically stable Cu/Pt near-surface alloy (NSA). Temperature-programmed desorption and DFT reveal that this Cu/Pt NSA binds CO significantly more weakly than does Pt alone, thereby implying a considerable reduction in the potential for CO poisoning of the Cu/Pt NSA surface as compared to that of pure Pt. In addition, DFT calculations show that this Cu/Pt NSA is able to activate H2O easily, which is the rate-determining step for the WGS on several metal surfaces, and, at the same time, to bind the products of that reaction and formate intermediates rather weakly, thus avoiding possible poisoning of the catalyst surface. The Cu/Pt NSA is thus a promising candidate for an improved WGS catalyst.  相似文献   

14.
Platinum (Pt) and iridium (Ir) catalysts are well known to strongly enhance the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) kinetics, respectively. Pt–Ir-based bimetallic compounds along with carbon-supported titanium oxides (C–TiO2) have been synthesized for the application as electrocatalysts in lithium oxygen batteries. Transition metal oxide-based bimetallic nanocomposites (Pt–Ir/C–TiO2) were prepared by an incipient wetness impregnation technique. The as-prepared electrocatalysts were composed of a well-dispersed homogenous alloy of nanoparticles as confirmed by X-ray diffraction patterns and Fourier transform scanning electron microscopy analyses. The electrochemical characterizations reveal that the Pt–Ir/C–TiO2 electrocatalysts were bifunctional with high activity for both ORR and OER. When applied as an air cathode catalyst in lithium-air batteries, the electrocatalyst improved the battery performance in terms of capacity, reversibility, and cycle life compared to that of cathodes without any catalysts.  相似文献   

15.
Polymer stabilization proved to be a promising approach to increase the catalytic performance of common platinum/carbon based cathode catalysts (Pt/C) used in polymer electrolyte membrane fuel cells (PEMFCs). Platinum and polyaniline composite catalysts (Pt/C/PANI) were prepared by combining chemical polymerization reactions with anion exchange reactions. Electrochemical ex-situ characterizations of the decorated Pt/C/PANI catalysts show high catalytic activity toward the oxygen reduction reaction (ORR) and, more importantly, a significant enhanced durability compared to the undecorated Pt/C catalyst. Transmission electron microscopy (TEM) investigations reveal structural benefits of Pt/C/PANI for ORR catalysis. All studies confirm high potential of Pt/C/PANI for practical fuel cell application.  相似文献   

16.
We report here the synthesis of binderless and template-less three-dimensional (3D) pinecone-shaped Pt/TiO2/Ti mesh structure. The TiO2 hydrothermally synthesized onto Ti mesh is composed of a mixture of flower-like nanorods and vertically aligned bar-shaped structures, whereas Pt film grown by pulsed laser deposition displays a smooth surface. XRD analyses reveal an average crystallite size of 41.4 nm and 68.5 nm of the TiO2 nanorods and Pt, respectively. In H2SO4 solution, the platinum oxide formation at the Pt/TiO2/Ti mesh electrode is 180 mV more negative than that at the Pt/Ti mesh electrode, indicating that TiO2 provides oxygeneous species at lower potentials, which will facilitate the removal of CO-like intermediates and accelerate an ethanol oxidation reaction (EOR). Indeed, the Pt/TiO2/Ti mesh catalyst exhibits current activity of 1.19 mA towards an EOR at a remarkably superior rate of 4.4 times that of the Pt/Ti mesh electrode (0.27 mA). Moreover, the presence of TiO2 as a support to Pt delivers a steady-state current of 2.1 mA, with an increment in durability of 6.6 times compared to Pt/Ti mesh (0.32 mA). Pt is chosen here as a benchmark catalyst and we believe that with catalysts that perform better than Pt, such 3D pinecone structures can be useful for a variety of catalytic or photoelectrochemical reactions.  相似文献   

17.
Selective hydrogenation of substituted nitroaromatic compounds is an extremely important and challenging reaction. Supported metal catalysts attract much attention in this reaction because the properties of metal nanoparticles (NPs) can be modified by the nature of the support. Herein, the support morphology on the catalytic performance of selective hydrogenation of 3-nitrostyrene to 3-vinylaniline was investigated. Pt NPs supported on octadecahedral α-Fe2O3 supports with a truncated hexagonal bipyramid shape (Pt/α-Fe2O3-O) and rod-shaped α-Fe2O3 supports (Pt/α-Fe2O3-R) were prepared by glycol reduction method. Detailed characterizations reveal that the electronic structure and dispersion of Pt NPs can be modified by the supports. The Pt/α-Fe2O3-O catalyst exhibited superior catalytic performance for hydrogenation of 3-nitrostyrene because of its low coordinated Pt sites and the small Pt NPs size, which is benefit from the high-index exposed surfaces of truncated hexagonal bipyramid-shaped α-Fe2O3 support. The structural evolution during the catalytic reaction was investigated in detail by identical location transmission electron microscopy (IL-TEM) method, which found that the high cycling activity of Pt/α-Fe2O3-O catalyst during the cycle experiment results from the stability of Pt NPs.  相似文献   

18.
The synthetic approach, electrochemical behavior, and optical absorption and emission properties are reported of the Pt-bipyridine-acetylide/Ru-bipyridine complex [(dbbpy)Pt{(ebpy)Ru(bpy) 2} 2] (4+), PtRu 2, the Pt-bipyridine-acetylide/Os-bipyridine analogue, PtOs 2, and the Pt/Ru/Os complex [(dbbpy)Pt(ebpy) 2Ru(bpy) 2Os(bpy) 2] (4+), PtRuOs; ebpy is 5-ethynylbpy, dbbpy is 4,4'-ditertiobutylbpy, and bpy is 2,2'-bipyridine. These triads are investigated in acetonitrile solvent by comparing their electrochemical and spectroscopic properties with those of the mononuclear species [(dbbpy)Pt(ebpy) 2], Pt, [Ru(ebpy)(bpy) 2] (2+), Ru, and [Os(ebpy)(bpy) 2] (2+), Os. Results of X-ray analysis of Pt are reported, which show the planar arrangement of this unit that features two free bpy sites. The absorption spectra of the triads and the mononuclear species show that light at 452 or 376 nm can be employed to observe luminescence spectra of these complexes; for the observation of emission lifetimes, nanoled sources at 465 and 373 nm are employed. With lambda exc = 452 (and 465) nm, one selectively produces Ru --> bpy/ebpy CT (RuLCT) or Os --> bpy/ebpy CT states (OsLCT); MLCT is a metal-to-ligand charge-transfer. With lambda exc = 376 (and 373) nm, one populates Pt --> dbbpy CT and intraligand charge transfer (ILCT, involving the ebpy fragment) levels, in addition to Ru(II)- or Os(II)-centered excited states, in aliquots that are estimated from comparison of the absorption features of the components. Upon excitation with light at 376 (and 373) nm, the optical studies of PtRu 2, PtOs 2, and PtRuOs reveal full quenching of the Pt-based emission and occurrence of efficient photoinduced energy transfer, leading to exclusive MLCT emission from the ruthenium and osmium centers. In particular, PtRuOs is found to exhibit a Ru- and Os-based dual luminescence, whose intensities ratio is consistent with a Pt --> Os intramolecular energy transfer step being 3-6 times faster than the Pt --> Ru one.  相似文献   

19.
The photophysical properties of [Ir]-[Pt]-[Ir]-[Pt]-[Ir] ([Ir] = [Ir(ppy)(2)(bpy*)](+) ([Pt] = trans-Pt(PBu(3))(2)(C≡C)(2); ppyH = 2-phenylpyridine); bpy* = bipyridyl;) reveal an unprecedented triplet energy transfer from the terminal iridiums to the central Ir subunit.  相似文献   

20.
The salts [Pt{C(NHMe)(2)}(4)][Au(CN)(2)](2), [Pt{C(NHMe)(2)}(4)][Ag(2)(CN)(3)][Ag(CN)(2)], [Pt(en)(2)][Au(CN)(2)](2), [Pt(en)(2)][Ag(CN)(2)](2), and [Pt(bipy)(2)][Au(CN)(2)](2) have been prepared by mixing solutions of salts containing the appropriate cation with solutions of K[Au(CN)(2)] or K[Ag(CN)(2)]. Because the platinum atom in the cation is sterically protected, the structures of [Pt{C(NHMe)(2)}(4)][Au(CN)(2)](2) and [Pt{C(NHMe)(2)}(4)][Ag(2)(CN)(3)][Ag(CN)(2)] reveal no close metal-metal interactions. Colorless crystals of [Pt(en)(2)][Au(CN)(2)](2) and [Pt(en)(2)][Ag(CN)(2)](2) are isostructural and involve extended chains of alternating cations and anions that run parallel to the crystallographic a axis, along with isolated anions. In the chains, the metal-metal separations are relatively short: Pt...Au, 3.1799(3) Angstroms; Pt...Ag, 3.1949(2) Angstroms. In [Pt(bipy)(2)][Au(CN)(2)](2), each cation has axial interactions with the anions through close Pt...Au contacts [3.1735(6) Angstroms]. In addition, the anions are weakly linked through Au...Au contacts of 3.5978(9) Angstroms. Unlike the previously reported Pt/Au complex [Pt(NH(3))(4)][Au(CN)(2)](2).1.5H(2)O, which is luminescent, none of the salts reported here luminesce.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号