首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A sensitive and selective protocol for the extraction of all forms of Cr(VI) from solid materials followed by determination by catalytic adsorptive stripping voltammetry has been elaborated. Cr(VI) was leached to a solution with 0.2 mol L?1 (NH4)2SO4/NH4OH+0.1 mol L?1 EDDS (pH 9.5) and simultaneously Cr(III) was transferred to a nonactive electrochemical complex with EDDS. The method allows for Cr(VI) determination in solid samples containing even a 1000–2000 fold excess of extractable Cr(III) without its noticeable influence. The effects of several experimental variables such as the composition and pH of the extractant, the time and temperature of the solid sample mixing with the extractant were studied. At the optimized conditions more than 95% of total Cr(VI) recoveries from solid samples were achieved. The validation of the proposed procedure was carried out by Cr(VI) determination in certified reference material CRM 019 Ash, spiked and unspiked with Cr(III), and by comparing the obtained results with those obtained using other common extraction procedures.  相似文献   

2.
3.
Ma HL  Tanner PA 《Talanta》2008,77(1):189-194
An isotope dilution method has been developed for the speciation analysis of chromium in natural waters which accounts for species interconversions without the requirement of a separation instrument connected to the mass spectrometer. The method involves (i) in-situ spiking of the sample with isotopically enriched chromium species; (ii) separation of chromium species by precipitation with iron hydroxide; (iii) careful measurement of isotope ratios using an inductively coupled plasma mass spectrometer (ICP-MS) with a dynamic reaction cell (DRC) to remove isobaric polyatomic interferences. The method detection limits are 0.4 μg L−1 for Cr(III) and 0.04 μg L−1 for Cr(VI). The method is demonstrated for the speciation of Cr(III) and Cr(VI) in local nullah and synthetically spiked water samples. The percentage of conversion from Cr(III) to Cr(VI) increased from 5.9% to 9.3% with increase of the concentration of Cr(VI) and Cr(III) from 1 to 100 μg L−1, while the reverse conversion from Cr(VI) to Cr(III) was observed within a range between 0.9% and 1.9%. The equilibrium constant for the conversion was found to be independent of the initial concentrations of Cr(III) and Cr(VI) and in the range of 1.0 (at pH 3) to 1.8 (at pH 10). The precision of the method is better than that of the DPC method for Cr(VI) analysis, with the added bonuses of freedom from interferences and simultaneous Cr(III) determination.  相似文献   

4.
A simple and rapid method is developed for the simultaneous determination of Cr(VI) and Cr(III) based on the formation of their different complexes with ammonium pyrrolidine-dithiocarbamate (APDC). Separation is performed using reversed-phase high-performance liquid chromatography coupled with UV detection. The conditions for complex formation and speciation are determined, such as solution pH, amount of APDC, temperature, and type of mobile phase. In order to substantially reduce the analysis time, the separation is carried out without extraction of chromium-APDC complexes from the mother liquor. Under the optimum analysis conditions, the chromatograms obtained show good peak separation, and the absolute detection limits (3s) are 2.2 microg/L for Cr(VI) and 4.5 microg/L for Cr(III). The calibration curves are linear from 3 to 5000 microg/L for Cr(VI) and 5 to 3000 microg/L for Cr(III). The relative standard deviations of peak areas in five measurements using a sample solution of 200 microg/L are less than 2% for Cr(VI) and 4% for Cr(III), indicating good reproducibility for this analytical method. Furthermore, simultaneous determination of Cr(VI) and Cr(III) is successful with the application of the proposed procedure in the synthetic wastewaters containing common heavy metal ions: Fe(III), Pb(II), Cd(II), Cu(II), and Zn(II).  相似文献   

5.
《Analytical letters》2012,45(10):2269-2275
Abstract

A simple fluorimetric determination of Cr(VI) in the presence of Cr(III) is described. This determination is based on the fluorescence, produced from the ion-association complex between the Crystal violet cation and the anionic complex, formed between Cr(VI) and excess of I?. This fluorescence is not observed when Cr(III) is used instead of Cr(VI). The fluorescence intensity is linear over the concentration range of 0–60 μg/1. The method was applied in potable and sea waters.  相似文献   

6.
The dose-dependent formation of Cr(III) complexes and uptake of chromium by Arthrobacter oxydans — a Gram-positive bacterium from contaminated Columbian basalt rocks (USA) — were studied along with the testing under aerobic conditions of two bacterial strains of Arthrobacter genera isolated from the polluted basalts from the Republic of Georgia. Instrumental neutron activation analysis (INAA) was used to track the accumulation of chromium in the bacterial cells. To monitor and identify Cr(III) complexes in these bacteria, electron spin resonance (ESR) spectrometry was employed.  相似文献   

7.
 Simple, rapid, sensitive and selective methods for the determination of Cr(III) and W(VI) with flavonol derivatives in the presence of surface-active agents are proposed. In the pH ranges 3.4–4.2 and 1.9–2.5, the molar absorptivities of Cr(III)-morin-emulsifier S (EFA) and W(VI)-morin-polyvinylpyrrolidone (PVP) systems are 1.13×105 and 2.13×104 L mol−1 cm−1 at 435 and 415 nm, respectively. The Cr(III)-quercetin-PVP and W(VI)-quercetin-cetylpyridinium bromide (CPB) systems are formed in the pH ranges 4–4.6 and 2.2–2.8 with molar absorptivities 1.02×105 and 9.02×104 L. mol−1 cm−1 at 441 and 419 nm, respectively. The linear dynamic ranges for the determination of Cr(III) and W(VI) with morin in the presence of EFA and PVP are 0.03–0.46 and 0.71–8.1 μg mL−1, respectively. The corresponding ranges with quercetin are 0.04–0.54 and 0.14–2.1 μg mL−1 of Cr(III) and W(VI), respectively. The r.s.d (n = 10) for the determination of 0.25 and 3.7 μg mL−1 of Cr(III) and W(VI) with morin and their detection limits are 0.88 and 0.99% and 0.016 and 0.63 μg mL−1, respectively. Using quercetin, the r.s.d (n = 10) for 0.22 and 1.2 μg mL−1 of Cr(III) and W(VI) and their detection limits are 0.92 and 0.91% and 0.015 and 0.08 μg mL−1, respectively. The critical evaluation of the proposed methods is performed by statistical analysis of the experimental data. The proposed methods are applied to determine Cr in steel, non-ferrous alloys, wastewater and mud filtrate and to the determination of W in steel. Received March 8, 1999. Revision January 21, 2000.  相似文献   

8.
The production of reference materials for quality control of Cr(III) and Cr(VI) speciation in environmental samples is described. It concerns in the first place two lyophilized solutions containing Cr(III) and Cr(VI) at different concentrations, respectively representative for drinking water and filter leaching solutions, and in the second place filters loaded with welding dust. Twenty-four laboratories with experience in the field participated in an intercomparison exercise organized to validate the suitability of the reference materials and to gauge the state-of-the-art of Cr speciation throughout Europe. The outcome of this exercise is discussed.  相似文献   

9.
Summary Chromium can be present in aqueous solution as Cr(VI) or in monomeric, dimeric, trimeric and higher polymeric forms of Cr(III). Many monomeric forms of Cr(III) are possible, with the water molecules of Cr(H2O) 6 3+ substituted by anionic or neutral species. This proliferation of Cr(III) species makes the complete speciation of chromium a continuing challenge to the analyst. A simple and effective cation exchange procedure for the separation of various of these species uses a small glass column containing 1 mL of pre-treated cation exchange resin (Na+ form). Stepwise elution with solutions of perchloric acid, Ca2+ (pH=2) and La3+ (pH=2) separates Cr(VI) and seven Cr(III) species from CrX3 to tetramer. Radiometric (Cr-51), spectrophotometric and other detection methods can be employed; the use of radiochromium gives the lowest detection limit.  相似文献   

10.
A simultaneous extraction of Cr3+ and Cr6+ species in aqueous solution was developed. The extraction behaviors of ammonium pyrrolidinedithiocarbamate (APDC) for both Cr6+ and Cr3+ are carefully discussed in this report. X-ray diffraction and spectroscopic studies indicate that Cr6+ reacts with the ammonium pyrrolidinedithiocarbamate ligand to form two products, Cr(PDC)2(OPDC) and Cr(PDC)3, where OPDC represents an oxygen insertion between Cr and S atoms. A high concentration of APDC in the phthalate buffer under an elevated temperature (50 degrees C) was applied in solvent extraction (SE) to increase the extraction efficiency of Cr3+, so that both Cr3+ and Cr6+ could be extracted by APDC simultaneously. The complex involving the oxygen insertion bonding Cr-O-S is separable from the normal Cr(PDC)3 complex chromatographically, thus allowing the quantification of Cr6+. The major product of Cr6+ has a structure of Cr(PDC)2(OPDC) and the minor product is Cr(PDC)3 with a ratio of Cr(PDC)2(OPDC)/Cr(PDC)3 being 8.5. The extraction conditions for Cr6+ and Cr3+ as well as the chromatographic separation of the complexes using high-performance liquid chromatography (HPLC) are reported. Potential applications for the chemical speciation of chromium by SE/HPLC in environmental aqueous solutions are also discussed.  相似文献   

11.
Speciation of Cr(III) and Cr(VI) can be attained by flow injection analysis with amperometric detection. Cr(VI) is reduced in an acidic medium to Cr(III) with a glassy carbon electrode at —0.1 V vs. Ag/AgCl and the current is recorded. Cr(III) is oxidised on-line to Cr(VI) with alkaline hydrogen peroxide solution. From the difference of the total chromium and Cr(VI), the amount of Cr(III) was obtained. A linear calibration curve for Cr(VI) was obtained for the concentration ranges 0.01-5.0ppm of Cr(VI) and we have calculated the limit of determination to be about 0.5ppb. We have studied the degree of reproducibility obtained using the solid electrodes under various conditions. The influence of flow rate, coil length, interfenences and the extent of reaction were studied.  相似文献   

12.
Feasibility and limitations of direct coupling of high performance liquid chromatographic (HPLC) separation to microwave induced plasma (MIP)-optical emission spectrometry (OES) for elementspecific detection was tested and compared to inductively coupled plasma (ICP)-optical emission spectrometric detection on the basis of the Cr(III)/Cr(VI) speciation analysis of water samples. Coupling was performed by a hydraulic high pressure nebulizer (HHPN) radiative-heating/watercooling interface which provides about 20 % and 80 % aerosol yield in the case of helium and argon carrier gases, respectively. Desolvation efficiency of aqueous solutions was approximately 80 %. Applying the ion-pair HPLC separation, the organic eluents and reagents in the MIP cause a 50–75 % signal suppression for Cr(VI) and 25–50 % for Cr(III). In a pure aqueous solution the MIP Cr(VI) signal was by 20 % lower than that of Cr(III). These effects were lower using the ICP source, but they cannot be neglected. Easily ionizable matrix elements (Na, Ca) can cause 70 % signal suppression in the MIP, and 20 % in the ICP. Therefore, species dependent calibration is required in both cases. In the case of HPLC detection by MIP-OES, the detection limit was 13 ng for Cr(III), and 18 ng for Cr(VI). Using the ICP-OES detection, the detection limit was 0.2 ng for Cr (III) and 0.4 ng for Cr (VI). The linear dynamic ranges in both cases were two orders of magnitude. Presented at the XVIIIth Slovak Spectroscopic Conference, Spišská Nová Ves, 15–18 October 2006.  相似文献   

13.
Ion interaction chromatography has been successfully used for the simultaneous determination of Cr(III) and Cr(VI) in waste water. A C-18 column which had been dynamically coated with octylamine was used for the separation of Cr(III) and Cr(VI) based on anionic interaction. Cr(III) was chelated with potassium hydrogen phthalate (KHP) before injecting into the column since the Cr(III) did not exist in an anionic form like the Cr(VI) (Cr2O72−) presented at the optimum condition. The analytes were detected at 200 nm and linear relationship between absorption with the concentration of Cr(III) or Cr(VI) was 0.1-50 mg/L. Most of the interested interferences including alkali metals, heavy metals and organic materials have no significant effect on Cr(III)-KHP complexation and Cr(VI) stability, only NH4+ and ascorbic acid yielded the serious effect on the Cr(VI) stability. The relative standard deviations calculated from both of peak area and retention time were 0.75-2.20%. The sensitivity of the method at the level concentration of sub mg/L enabled the simultaneous determination of Cr(III) and Cr(VI) contents in waste water samples without any special sample preparation step.  相似文献   

14.
《Analytical letters》2012,45(13-14):2877-2885
Abstract

The adsorption studies of Cr(VI) in presence of Cr(III) on the sulphide of Lead, Zinc and Copper has been studied. It has been found that in case of lead sulphide 100% adsorption of Cr(VI) took place at pH 4.0 and of Cr(III) at pH 7.0. While in case of zinc sulphide the 100% adsorption of Cr(VI) took place at pH 4.5 and of Cr(III) at pH 6.5. In case of copper sulphide 100% adsorption of Cr(VI) took place at pH 5.0 and of Cr(III) at pH 7.0. This difference in adsorption at different pH values forms the basis for the determination of these ions. The method is accurate.  相似文献   

15.
Summary 2-Oximinodimedone dithiosemicarbazone reacts with Cr(VI) in strongly acid medium. The orange colour obtained has been used to propose a spectrophotometric method of Cr(VI) determination in the concentration range 0.40–9.5g ml–1 (=5600 mole–1-cm–1 at 485 nm). The stoichiometry of the reaction is 32 (reagentCr(VI)) which is in accordance with the oxidation reaction of the reagent by Cr(VI). The method has been applied to the determination of Cr(VI) and Fe(III) in ceramic materials.
Eine Studie zur Cr(VI)-2-oximinodimedondithiosemicarbazon-Reaktion und die simultane Bestimmung von Cr(VI) und Fe(III)
Zusammenfassung 2-Oximinodimedonedithiosemicarbazon reagiert in stark saurem Milieu mit Cr(VI). Die orange Farbe kann im Konzentrationsbereich von 0.4–9,5g/ml zur spektrophotometrischen Cr(VI)-Bestimmung verwendet werden (=5600 1 mol–1cm–1bei 485 nm). Die Stöchiometrie der Reaktion ist 32 (Reagens: Cr(VI)) und entspricht der Oxidation des Reagens durch Cr(VI). Die Methode wurde zur Bestimmung von Cr(VI) und Fe(III) in keramischen Materialien eingesetzt.
  相似文献   

16.
Reference materials for the speciation and quantification of chromium in contaminated soils were prepared by impregnating diatomaceous earth with BaCrO4 and Cr2O3. The chronium concentrations of these materials were confirmed to be 200 mg/kg both by atomic absorption spectrometry and by instrumental neutron activation analysis, but monthly assays over two calendar quarters of the reference material impregnated with BaCrO4 revealed the hexavalent chromium was not stable in this matrix.  相似文献   

17.
18.
A method for the separation and preconcentration of Cr(III) and Cr(VI) on activated carbon in presence of diethyldithiocarbamate as a complexing reagent was optimized. The method makes it possible to achieve 200- to 500-fold Cr(VI) concentrating depending on the initial volume of the solution to be analysed and the final volume eluted. The Cr(VI) concentration in the background solution determined with RSD 30% was equal to 1.5 g L. The limit of Cr(VI) determination was equal to 0.9 g L.  相似文献   

19.
Summary A method for the determination of chromium(III) and (VI) species has been studied and applied to mineral water samples. The chromium(III) was chelated with 0.1 mol/l 8-hydroxyquinoline in methyl alcohol, extracted in isobutyl methyl ketone and determined by ETA-AAS. The effects of the pH, extraction and heating time and amounts of the reagents required for the extraction were studied. A method for the determination of total chromium was optimized too, and the chromium(VI) can be calculated. The precision, sensibility, accuracy, graphite furnace program and interferences for both methods were also investigated.  相似文献   

20.
A novel on-line oxidation method of ultra-trace Cr(III) dissolved in natural water has been developed using a flow electrolysis cell. This method was successfully applied to the determination of the total Cr concentration by flow injection-solid phase spectrophotometry using diphenylcarbazide as a coloring agent. With the applied potential of 1.35 V (vs. Ag/AgCl) and the flow rate of 0.80 cm(3) min(-1), Cr(III) was quantitatively oxidized to Cr(VI) at room temperature. The total Cr concentration of sub-microg dm(-3) in 3 - 4 samples could be determined within 1 h using an aqueous sample volume of 7.1 cm(3). The analytical values of the total Cr concentration in natural water were in good agreement with those obtained by ICP-MS. The detection limit of the proposed method was 0.014 microg dm(-3) (3sigma, n = 7). This method could be applied to the specific determination of Cr(III) and Cr(VI) in river water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号