首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spin torque transfer structures with new spin switching configurations are proposed, fabricated and investigated in this paper. The non-uniform current-induced magnetization switching is implemented based on both GMR and MTJ nano devices. The proposed new spin transfer structure has a hybrid free layer that consists of a layer with conductive channels (magnetic) and non-conductive matrix (non-magnetic) and traditional free layer(s). Two mechanisms, a higher local current density by nano-current-channels and a non-uniform magnetization switching (reversal domain nucleation and growth) by a magnetic nanocomposite structure, contribute in reducing the switching current density. The critical switching current density for the new spin transfer structure is reduced to one third of the typical value for the normal structure. It can be expected to have one order of magnitude or more reduction for the critical current density if the optimization of materials and fabrication processes could be done further. Meanwhile, the thermal stability of this new spin transfer structure is not degraded, which may solve the long-standing scaling problem for magnetic random access memory (MRAM). This spin transfer structure, with the proposed and demonstrated new spin switching configurations, not only provides a solid approach for the practical application of spin transfer devices but also forms a unique platform for researchers to explore the non-uniform current-induced switching process.  相似文献   

2.
We propose to accelerate reversal of the ferromagnetic order parameter in spin valves by electronic noise. By solving the stochastic equations of motion we show that the current-induced magnetization switching time is drastically reduced by a modest level of externally generated current (voltage) noise. This also leads to a significantly lower power consumption for the switching process.  相似文献   

3.
To clarify the contributions of spin-polarized current and spin accumulation to the current-induced magnetization switching, the effects of the top electrode size of the magnetic nanopillar are investigated both theoretically and experimentally. Theoretical calculation demonstrates that the spin-polarized current and the spin accumulation can be adjusted in opposite directions by modifying the size of the top electrode. Increase in the size of the top electrode suppresses the spin accumulation but enhances the spin-polarized current inside the nanopillar. On the other hand, it is shown experimentally that the nanopillar with a wide top electrode exhibits small critical switching current compared to the nanopillar with a narrow top electrode. The results suggest that the spin-polarized current contributes to the current-induced magnetization switching dominantly over the spin accumulation.  相似文献   

4.
We have investigated the current-induced magnetization switching in an exchange-biased spin valve structure. By using an unpatterned antiferromagnetic layer to pin the fixed Co layer, we obtained a lower switching current density by a factor of 5 than a simple spin valve structure. For the application, it is important to know how to keep the spin polarization when the thicker layer is pinned by an antiferromagnet. The unpatterned pinned ferromagnetic lead can be a good solution for spin-transfer-torque-activated device. The effect of Cu buffer layer on the top of the thin Co and Ru buffer layer under the thick Co layer on the current-induced magnetization switching in cobalt-based trilayer spin valves was also investigated. The experimental results showed that the Ru buffer layer in combination with Cu buffer layer could induce a decrease in the critical switching current by 30%, and an increase in the absolute resistance change by 35%, which is caused by an improvement of a microstructure of a thicker Co polarizer.  相似文献   

5.
The current-induced magnetic switching is studied in Co/Cu/Co nanopillar with an in-plane magnetization traversed under the perpendicular-to-plane external field.Magnetization switching is found to take place when the current density exceeds a threshold.By analyzing precessional trajectories,evolutions of domain walls and magnetization switching times under the perpendicular magnetic field,there are two different magnetization switching modes:nucleation and domain wall motion reversal;uniform magnetization ...  相似文献   

6.
Long-lived optical anisotropy generated in glasses by bichromatic mutually coherent radiation is associated with the accumulation of a built-in electric field. The kinetics of photoinduced anisotropy was studied within the framework of a phenomenological model taking into account the polarization-and current-induced mechanisms of field formation and the medium conductivity. The combination of the current and polarization mechanisms gives rise to new effects. The accumulation of anisotropy and its dark relaxation have a nonmonotonic character. For a sufficiently high and rapidly relaxing photoconductivity, “hidden writing” is possible, for which the anisotropy is absent during the course of bichromatic illumination, but it appears after switching off the light and relaxes slowly due to dark conduction.  相似文献   

7.
The temperature dependence of current-induced magnetization switching of ferrimagnetic CoGd free layers in spin valves is explored. At temperatures well above and well below the magnetization compensation temperature (T(MC)) of CoGd, a current flowing from the free layer to the CoFe fixed layer aligns the moments of the two layers parallel, and a current flowing in the opposite direction aligns them antiparallel. However, for intermediate temperatures just above T(MC), the current-induced alignment of the moments is reversed. We attribute this effect to the different compensation temperatures of the net magnetization and angular momentum of CoGd.  相似文献   

8.
《Current Applied Physics》2010,10(2):659-663
We investigated the increase in temperature of a nanopillar due to the current injection for the current-induced magnetization switching. Particular focus was made on the effect of the resistance-area (RA) product on the temperature increase of a nanopillar, which is an important parameter for applications in spin-transfer torque magnetic random access memory. With the hot electron model, the RA product and area dependence of the nanopillar temperature were obtained using a finite element method. The dependency of the increase in temperature on the current density, current directions, and pulse width were also examined. The nanopillar temperature was found to be proportional to the RA product, and decreased with decreasing cross-sectional area of the pillar. In contrast to expectations, an increase in nanopillar temperature was not serious over a wide range of parameters.  相似文献   

9.
By combining pairs of ferromagnetic metals with the same or different signs of scattering anisotropies in ferromagnetic-nonmagnetic-ferromagnetic metal nanopillars, we independently invert just the magnetoresistance, just the direction of current-induced magnetization switching, or both together, at room temperature (295 K) and at 4.2 K. In all cases studied, the switching direction is correctly predicted from the net scattering anisotropy of the fixed ferromagnet, including both bulk and interfacial contributions.  相似文献   

10.
We provide evidence for the effects of spin polarized current on a nanofabricated antiferromagnet incorporated into a spin-valve structure. The signatures of the current-induced effects include bipolar steps in differential resistance, current-induced changes of exchange bias correlated with these steps, and deviations from the statistics expected for thermally activated switching of spin valves. We explain our observations by a combination of spin torque exerted on the interfacial antiferromagnetic moments and electron-magnon scattering in an antiferromagnet.  相似文献   

11.
We report on the results of experiments on polarization switching in a ferroelectric TGS crystal during injection of electron beams from a scanning electron microscope under a surface layer. A series of models reflecting the polarization switching dynamics of a ferroelectric crystal under the action of an injected charge is constructed. The implementation of these models is based on the principles of evolution of domain structures taking into account analysis of possible polarization switching mechanisms for ferroelectric samples. A mathematical model developed using these principles demonstrates qualitative similarity of model current pulses and those obtained experimentally in the injection mode.  相似文献   

12.
Detection of current-induced spin accumulation via ferromagnetic contacts is discussed. Onsager's relations forbid that in a two-probe configuration, spins excited by currents in time-reversal symmetric systems can be detected by switching the magnetization of a ferromangetic detector contact. Nevertheless, current-induced spins can be transferred as a torque to a contact magnetization and can affect the charge currents in many-terminal configurations. We demonstrate the general concepts by solving the microscopic transport equations for the diffuse Rashba system with magnetic contacts.  相似文献   

13.
Dynamics of current-induced magnetic switching of a single-molecule magnet in the case of Coulomb blockade is investigated theoretically. The molecule is weakly coupled to two ferromagnetic metallic electrodes with collinear magnetic moments, and the molecule's easy axis is assumed to form an arbitrary angle with these moments. The central focus of the paper is placed on discussing the influence of magnetic configuration of the system on the switching mechanism. It is shown that the crucial role in the switching process is played by the angle between the SMM's easy axis and electrodes’ magnetic moments.  相似文献   

14.
Recently, it has been predicted that a spin-polarized electrical current perpendicular to plane directly flowing through a magnetic element can induce magnetization switching through spin-momentum transfer. In this Letter, the first observation of current-induced magnetization switching (CIMS) in exchange-biased spin valves (ESPVs) at room temperature is reported. The ESPVs show the CIMS behavior under a sweeping dc current with a very high critical current density. It is demonstrated that a thin ruthenium (Ru) layer inserted between a free layer and a top electrode effectively reduces the critical current densities for the CIMS. An "inverse" CIMS behavior is also observed when the thickness of the free layer increases.  相似文献   

15.
包瑾  徐晓光  姜勇 《物理学报》2009,58(11):7998-8001
通过实验研究了一种特殊的反对称自旋阀结构.研究发现,随着外加磁场的增大,该结构纳米器件表现出了一种由“逆CIMS”向“正常CIMS”的转变.这种现象是因为:该反对称自旋阀在不同的外加磁场下有不同的磁化取向,因而引起不同的CIMS行为. 关键词: CPP ESPV CIMS  相似文献   

16.
The current-induced domain wall motion was observed experimentally in the case of the domain wall trapped at the semicircular arc within the U shape Ni80Fe20 wire. The measurement of the current-induced domain wall motion was achieved by adding a biased field before switching field and a critical current density was measured. We found two magnetic domain structures in the U pattern. At zero fields, the vortex domain wall nucleated at the semicircular arc of the U pattern. Continuous magnetic state without wall was investigated in near-switching field.  相似文献   

17.
We report the realization of a read-write device out of the ferromagnetic semiconductor (Ga,Mn)As as the first step to a fundamentally new information processing paradigm. Writing the magnetic state is achieved by current-induced switching and readout of the state is done by the means of the tunneling anisotropic magnetoresistance effect. This 1?bit demonstrator device can be used to design an electrically programmable memory and logic device.  相似文献   

18.
Current-induced switching from a metallic to an insulating state is observed in phase-separated states of (La(1-y)Pr(y))0.7Ca0.3MnO3 (y=0.7) and Nd(0.5)Ca(0.5)Mn(1-z)Cr(z)O3 (z=0.03) crystals. The application of magnetic fields to this current-induced insulating state causes a pronounced low-field negative magnetoresistance effect [rho(H)/rho(0)=10(-3) at H=1 kOe]. The application of a constant voltage also causes the breakdown of the Ohmic relation above a threshold voltage. At voltages higher than this threshold value, oscillations in currents are observed. This oscillation is well reproduced by a simple model of local switching of a percolative conduction path.  相似文献   

19.
In a combined numerical and experimental study, we demonstrate that current pulses of different polarity can reversibly and controllably displace a magnetic domain wall (DW) in submicrometer permalloy (NiFe) ring structures. The critical current densities for DW displacement are correlated with the specific spin structure of the DWs and are compared to results of micromagnetic simulations including a spin-torque term. Using a notch, an attractive local pinning potential is created for the DW resulting in a highly reproducible spin structure of the DW, critical for reliable current-induced switching.  相似文献   

20.
Solving the Landau–Lifshitz–Gilbert–Slonczewski equation numerically, we show that switching current density for the current-induced magnetization switching decreases by introducing the perpendicular anisotropy smaller than the out-of-plane demagnetization energy in the switched layer as predicted by theories. Interestingly, the introduction of the perpendicular anisotropy does not decrease the thermal stability of magnetization, but rather slightly increases. The reduction in switching current density results from the decrease of demagnetization effect whereas the increase of thermal stability results from the decrease of attempt frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号