首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A gauge-invariant regularization procedure for quantum field theories of electric and magnetic charges based on Zwanziger's local formulation is proposed. The bare regularized full Green functions of gauge-invariant operators are shown to be Lorentz invariant. This would have as a consequence the Lorentz invariance of the finite Green functions that might result after any reasonable subtraction, if such a subtraction can be found.  相似文献   

2.
A simple algorithm to construct the generator of gauge transformation for a constrained canonical system with a singular higher-order Lagrangian in field theories is developed. Based on phase-space generating functional of Green function for such a system, the generalized canonical Ward identities under the non-local transformation have been deduced. For the gauge-invariant system, based on configuration-space generating functional, the generalized Ward identities under the non-local transformation have been also derived.The conservation laws are deduced at the quantum level. The applications of the above results to the gauge invariance massive vector field and non-Abelian Chern–Simons(CS) theories with higher-order derivatives are given, a new form of gauge-ghost proper vertices, and Ward–Takahashi identity under BRS transformation and BRS charge at the quantum level are obtained. In the canonical formulation one does not need to carry out the integration over canonical momenta in phase-space path integral as usually performed.  相似文献   

3.
R. Balescu  M. Poulain 《Physica A》1975,79(6):559-568
A manifestly gauge-invariant formulation of quantum electrodynamics is constructed in which the basic dynamical variables are physically observable quantities. The theory is relativistically covariant, because the structure of the Poincaré group is built into it from the beginning.  相似文献   

4.
Based on the phase-space generating functional of the Green function for a system with a regular/singular higher-order Lagrangian, the quantum canonical Noether identities (NIs) under a local and non-local transformation in phase space have been deduced, respectively. For a singular higher-order Lagrangian, one must use an effective canonical action IeffP in quantum canonical NIs instead of the classical IP in classical canonical NIs. The quantum NIs under a local and non-local transformation in configuration space for a gauge-invariant system with a higher-order Lagrangian have also been derived. The above results hold true whether or not the Jacobian of the transformation is equal to unity or not. It has been pointed out that in certain cases the quantum NIs may be converted to conservation laws at the quantum level. This algorithm to derive the quantum conservation laws is significantly different from the quantum first Noether theorem. The applications of our formulation to the Yang-Mills fields and non-Abelian Chern-Simons (CS) theories with higher-order derivatives are given, and the conserved quantities at the quantum level for local and non-local transformations are found, respectively.Received: 12 February 2002, Revised: 16 June 2003, Published online: 25 August 2003Z.-P. Li: Corresponding authorAddress for correspondence: Department of Applied Physics, Beijing Polytechnic University, Beijing 100022, P.R. China  相似文献   

5.
A locally gauge-invariant formulation of parastatistics, which is equivalent to a Yang-Mills gauge theory, is given, using a complex Clifford algebra (case of SU(N)) or a real Clifford algebra (case of SO(N)). In particular, for the SU(3) case, the gauged theory of para-Fermi quarks is equivalent to quantum chromodynamics.  相似文献   

6.
A Minkowski-lattice version of quantum electrodynamics (or rather its simplified version, with matter described by a scalar field) is constructed. Quantum fields are consequently described in a gauge-independent way, i.e. the algebra of quantum observables of the theory is generated by gauge-invariant operators assigned to zero-, one-, and two-dimensional elements of the lattice. The operators satisfy canonical commutation relations. The uniqueness of representation of this algebra is proved. Field dynamics is formulated in terms of difference equations imposed on the field operators. It is obtained from a discrete version of the path-integral. The theory is local and causal.  相似文献   

7.
Quantization theory gives rise to transverse phonons for the traditional Coulomb gauge condition and to scalar and longitudinal photons for the Lorentz gauge condition. We describe a new approach to quantize the general singular QED system by decomposing a general gauge potential into two orthogonal components in general field theory, which preserves scalar and longitudinal photons. Using these two orthogonal components, we obtain an expansion of the gauge-invariant Lagrangian density, from which we deduce the two orthogonal canonical momenta conjugate to the two components of the gauge potential. We then obtain the canonical Hamiltonian in the phase space and deduce the inherent constraints. In terms of the naturally deduced gauge condition, the quantization results are exactly consistent with those in the traditional Coulomb gauge condition and superior to those in the Lorentz gauge condition. Moreover, we find that all the nonvanishing quantum commutators are permanently gauge-invariant. A system can only be measured in physical experiments when it is gauge-invariant. The vanishing longitudinal vector potential means that the gauge invariance of the general QED system cannot be retained. This is similar to the nucleon spin crisis dilemma, which is an example of a physical quantity that cannot be exactly measured experimentally. However, the theory here solves this dilemma by keeping the gauge invariance of the general QED system.  相似文献   

8.
A manifestly gauge-invariant formulation of non-relativistic quantum mechanics is applied to the case of time-dependent harmonic oscillator in the magnetic dipole approximation. A general equation for obtaining gauge-invariant transition probability amplitudes is derived.  相似文献   

9.
The electromagnetic properties of superconductors are studied in the framework of a quantum gauge-invariant theory. The formulation is developed in the generalized pair approximation which preserves the Ward-Takahashi identities. The macroscopic equations which regulate current and electromagnetic fields are derived by means of the boson transformation method. Comparison with previous works is reported.  相似文献   

10.
11.
A quantum kinetic theory for correlated charged-particle systems in strong time-dependent electromagnetic fields is developed. Our approach is based on a systematic gauge-invariant nonequilibrium Green's functions formulation. Extending our previous analysis [1] we concentrate on the selfconsistent treatment of dynamical screening and electromagnetic fields which is applicable to arbitrary nonequilibrium situations. The resulting kinetic equation generalizes previous results to quantum plasmas with full dynamical screening and includes many-body effects. It is, in particular, applicable to the interaction of dense plasmas with strong electromagnetic fields, including laser fields and x-rays. Furthermore, results for the modification of the plasma screening and the longitudinal field fluctuations due to the electromagnetic field are presented.  相似文献   

12.
We review the current state of research on the construction of effective actions in supersymmetric quantum field theory. Special attention is paid to gauge models with extended supersymmetry in the superfield approach. The advantages of formulation of such models in harmonic superspace for the calculation of effective action are emphasized. Manifestly supersymmetric and manifestly gauge-invariant methods for constructing the low-energy effective actions and deriving the corrections to them are considered and the possibilities to obtain the exact solutions are discussed. The calculations of one-loop effective actions in N = 2 supersymmetric Yang–Mills theory with hypermultiplets and in N = 4 supersymmetric Yang–Mills theory are analyzed in detail. The relationship between the effective action in supersymmetric quantum field theory and the low-energy limit in superstring theory is discussed.  相似文献   

13.
Quantal global symmetry for a gauge-invariant system   总被引:1,自引:0,他引:1  
Based on the configuration-space generating functional obtained by using the Faddeev-Popov trick for a gauge-invariant system, the Ward identities for global transformation are derived. The conservation laws at the quantum level for global symmetry transformation are also deduced. A preliminary application of the present formulation to non-Abelian Chern-Simons (CS) theory is given. The Ward identity and quantal BRS charge under the BRS transformation are deduced. The quantal conserved angular momentum is obtained and the fractional spin for CS theories is discussed.  相似文献   

14.
We give a formulation of classical spinor electrodynamics in terms of gauge-invariant quantities. The set of invariants consists of bilinear combinations of spinor fields (currents), a real-valued covector field, and a complex scalar field of modulus one. The presented result is a first step towards formulating quantum electrodynamics in terms of gauge-invariant fields.  相似文献   

15.
We propose a manifestly covariant canonical method of field quantization based on the classical De Donder-Weyl covariant canonical formulation of field theory. Owing to covariance, the space and time arguments of fields are treated on an equal footing. To achieve both covariance and consistency with standard non-covariant canonical quantization of fields in Minkowski spacetime, it is necessary to adopt a covariant Bohmian formulation of quantum field theory. A preferred foliation of spacetime emerges dynamically owing to a purely quantum effect. The application to a simple time-reparametrization invariant system and quantum gravity is discussed and compared with the conventional non-covariant Wheeler-DeWitt approach.Received: 11 October 2004, Published online: 6 July 2005PACS: 04.20.Fy, 04.60.Ds, 04.60.Gw, 04.60.-m  相似文献   

16.
Different approaches are compared to formulation of quantum mechanics of a particle on the curved spaces. At first, the canonical, quasiclassical, and path integration formalisms are considered for quantization of geodesic motion on the Riemannian configuration spaces. A unique rule of ordering of operators in the canonical formalism and a unique definition of the path integral are established and, thus, a part of ambiguities in the quantum counterpart of geodesic motion is removed. A geometric interpretation is proposed for noninvariance of the quantum mechanics on coordinate transformations. An approach alternative to the quantization of geodesic motion is surveyed, which starts with the quantum theory of a neutral scalar field. Consequences of this alternative approach and the three formalisms of quantization are compared. In particular, the field theoretical approach generates a deformation of the canonical commutation relations between operators of coordinates and momenta of a particle. A cosmological consequence of the deformation is presented in short.  相似文献   

17.
This paper presents the general theory of canonical transformations of coordinates in quantum mechanics. First, the theory is developed in the formalism of phase space quantum mechanics. It is shown that by transforming a star-product, when passing to a new coordinate system, observables and states transform as in classical mechanics, i.e., by composing them with a transformation of coordinates. Then the developed formalism of coordinate transformations is transferred to a standard formulation of quantum mechanics. In addition, the developed theory is illustrated on examples of particular classes of quantum canonical transformations.  相似文献   

18.
19.

We have considered the generalized version of chiral schwinger model with the Lorentz covariant masslike term for gauge field with the choice a ? r2 =?0. We carry out the quantization by the canonical Dirac method of both the gauge-invariant and non-invariant version of this model to determine the phase space structure. Therefore we have shown that the gauge invariant theory has the same physical spectrum as that of the original gauge noninvariant formulation.

  相似文献   

20.
A quantization of field theory based on the De Donder-Weyl (DW) covariant Hamiltonian formulation is discussed. A hypercomplex extension of quantum mechanics, in which the space-time Clifford algebra replaces that of the complex numbers, appears as a result of quantization of Poisson brackets on differential forms which were put forward for the DW theory earlier. The proposed covariant hypercomplex Schrödinger equation is shown to lead in the classical limit to the DW Hamilton-Jacobi equation and to obey the Ehrenfest principle in the sense that the DW canonical field equations are satisfied for expectation values of properly chosen operators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号