首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
有中学化学参考资料题:0.10 mol/L的NH4Cl和(NH4)2SO4溶液哪个pH值高?这似乎是个中学生可做的简单题目,仔细考虑不是如此.如果简单地认为盐酸和硫酸都是强酸,而硫酸是二元酸,硫酸铵溶液中铵盐浓度为0.20 mol/L,那么NH4Cl溶液pH高,那是不妥的.硫酸是二元酸,第一个氢离子能完全电离,第二个氢离子部分电离,如此考虑情况怎么样呢?是不是答案发生变化?这要通过计算来说明.  相似文献   

2.
The conversion efficiencies reported for Tin(Sn)halide-based perovskite solar cells(PSCs)fall a large gap behind those of lead halide-based PSCs,mainly because of poor film quality of the former.Here we report an efficient strategy based on a simple secondary crystallization growth(SCG)technique to improve film quality for tin halide-based PSCs by applying a series of functional amine chlorides on the perovskite surface.They were discovered to enhance the film crystallinity and suppress the oxidation of Sn2+remarkably,hence reduce trap state density and non-irradiative recombination in the absorber films.Furthermore,the SCG film holds the band levels matching better with carrier transport layers and herein favoring charge extraction at the device interfaces.Consequently,a champion device efficiency of 8.07% was achieved alo ng with significant enhancements in VOC and JSC,in contrast to 5.35% of the control device value.Moreover,the SCG film-based devices also exhibit superior stability comparing with the control one.This work explicitly paves a novel and general strategy for developing high performance lead-free PSCs.  相似文献   

3.
Bioimaging,as a powerful and helpful tool,which allows people to investigate deeply within living organisms,has contributed a lot for both clinical theranostics and scientific research.Pure organic room temperature phosphorescence(RTP)materials with the unique features of ultralong luminescence lifetime and large Stokes shift,can efficiently avoid biological autofluorescence and scattered light through a time-resolved imaging modality,and thus are attracting increasing attention.This review classifies pure organic RTP materials into three categories,including small molecule RTP materials,polymer RTP materials and supramolecular RTP materials,and summarizes the recent advances of pure organic RTP materials for bioimaging applications.  相似文献   

4.
Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO2 and Spiro-OMeTAD were employed as electron and hole transport layer(ETL/HTL)respectively.The inevitable interfacial recombination of charge carriers at ETL/perovskite and perovskite/HTL interface diminished the efficiency in planar(n-i-p)perovskite solar cells.By employing computational approach for uni-dimensional device simulator,the effect of band offset on charge recombination at both interfaces was investigated.We noted that it acquired cliff structure when the conduction band minimum of the ETL was lower than that of the perovskite,and thus maximized interfacial recombination.However,if the conduction band minimum of ETL is higher than perovskite,a spike structure is formed,which improve the performance of solar cell.An optimum value of conduction band offset allows to reach performance of 25.21%,with an open circuit voltage(VOC)of 1231 mV,a current density JSC of 24.57 mA/cm2 and a fill factor of 83.28%.Additionally,we found that beyond the optimum offset value,large spike structure could decrease the performance.With an optimized energy level of Spiro-OMeTAD and the thickness of mixed-perovskite layer performance of 26.56% can be attained.Our results demonstrate a detailed understanding about the energy level tuning between the charge selective layers and perovskite and how the improvement in PV performance can be achieved by adjusting the energy level offset.  相似文献   

5.
Carbon nanotubes(CNTs),as one-dimensional nanomaterials,show great potential in energy conversion and storage due to their efficient electrical conductivity and mass transfer.However,the security risks,time-consuming and high cost of the preparation process hinder its further application.Here,we develop that a negative pressure rather than a following gas environment can promote the generation of cobalt and nitrogen co-doped CNTs(Co/N-CNTs) by using cobalt zeolitic imidazolate framework(ZIF-67) as a precursor,in which the negative pressure plays a key role in adjusting the size of cobalt nanoparticles and stimulating the rearragement of carbon atoms for forming CNTs.Importantly,the obtained Co/N-CNTs,with high content of pyridinic nitrogen and abundant graphitized structure,exhibit superior catalytic activity for oxygen reduction reaction(ORR) with half-wave potential(E1/2) of 0.85 V and durability in terms of the minimum current loss(2%) after the 30,000 s test.Our development provides a new pathway for large-scale and cost-effective preparation of metal-doped CNTs for various applications.  相似文献   

6.
The pressing demand for high-energy/power lithium-ion batteries requires the deployment of cathode materials with higher capacity and output voltage.Despite more than ten years of research,high-voltage cathode mate-rials,such as high-voltage layered oxides,spinel LiNi0.5Mn1.5O4,and high-voltage polyanionic compounds still cannot be commercially viable due to the instabilities of standard electrolytes,cathode materials,and cathode electrolyte interphases under high-voltage operation.This paper summarizes the recent advances in addressing the surface and interface issues haunting the application of high-voltage cathode materials.The understanding of the limitations and advantages of different modification protocols will direct the future endeavours on advancing high-energy/power lithium-ion batteries.  相似文献   

7.
Suppressing the trap-state density and the energy loss via ternary strategy was demonstrated.Favorable vertical phase distribution with donors(acceptors)accumulated(depleted)at the interface of active layer and charge extraction layer can be obtained by introducing appropriate amount of polymer acceptor N2200 into the systems of PBDB-T:IT-M and PBDB-TF:Y6.In addition,N2200 is gradiently distributed in the vertical direction in the ternary blend film.Various measurements were carried out to study the effects of N2200 on the binary systems.It was found that the optimized morphology especially in vertical direction can significantly decrease the trap state density of the binary blend films,which is beneficial for the charge transport and collection.All these features enable an obvious decrease in charge recombination in both PBDB-T:IT-M and PBDB-TF:Y6 based organic solar cells(OSCs),and power conversion efficiencies(PCEs)of 12.5%and 16.42%were obtained for the ternary OSCs,respectively.This work indicates that it is an effective method to suppress the trap state density and thus improve the device performance through ternary strategy.  相似文献   

8.
A generic coarse-grained bead-and-spring model,mapped onto comb-shaped polycarboxylate-based(PCE)superplasticizers,is developed and studied by Langevin molecular dynamics simulations with implicit solvent and explicit counterions.The agreement on the radius of gyration of the PCEs with experiments shows that our model can be useful in studying the equilibrium sizes of PCEs in solution.The effects of ionic strength,side-chain number,and side-chain length on the conformational behavior of PCEs in solution are explored.Single-chain equilibrium properties,including the radius of gyration,end-to-end distance and persistenee length of the polymer backbone,shape-asphericity parameter,and the mean span dimension,are determined.It is found that with the increase of ionic strength,the equilibrium sizes of the polymers decrease only slightly,and a linear dependenew of the persistence length of backbone on the Debye screening length is found,in good agreement with the theory developed by Dobrynin.Increasing side-chain numbers and/or side-chain lengths increases not only the equilibrium sizes(radius of gyration and mean span)of the polymer as a whole,but also the persistence length of the backbone due to excluded volume interactions.  相似文献   

9.
Laser-structuring is an effective method to promote ion diffusion and improve the performance of lithium-ion battery(LIB)electrodes.In this work,the effects of laser structuring parameters(groove pitch and depth)on the fundamental characteristics of LIB electrode,such as interfacial area,internal resistances,material loss and electrochemical performance,are investigated,LiNi0.5Co0.2Mn0.3O2 cathodes were structured by a femtosecond laser by varying groove depth and pitch,which resulted in a material loss of 5%-14%and an increase of 140%-260%in the in terfacial area between electrode surface and electrolyte.It is shown that the importance of groove depth and pitch on the electrochemical performance(specific capacity and areal discharge capacity)of laser-structured electrode varies with current rates.Groove pitch is more im porta nt at low current rate but groove depth is at high curre nt rate.From the mapping of lithium concentration within the electrodes of varying groove depth and pitch by laser-induced breakdown spectroscopy,it is verified that the groove functions as a diffusion path for lithium ions.The ionic,electronic,and charge transfer resistances measured with symmetric and half cells showed that these internal resistances are differently affected by laser structuring parameters and the changes in porosity,ionic diffusion and electronic pathways.It is demonstrated that the laser structuring parameters for maximum electrode performance and minimum capacity loss should be determined in consideration of the main operating conditions of LIBs.  相似文献   

10.
Nowadays,tremendous researches have been focused on the core-shell lipid-polymer nanoparticles(LPNs) due to the advantages of both liposomes and polymer nanoparticles.In this work,LPNs were applied to encapsulate brinzolamide(Brz-LPNs) for achieving sustained drug release,improving drug corneal permeation and enhancing drug topical therapeutic effect.The structure of Brz-LPNs was composed of poly(lactic-co-glycolic) acid(PLGA) nanocore which encapsulated Brz(Brz-NPs) and lipid shell around the core.Brz-LPNs were prepared by a modified thin-film dispersion method.With the parameters optimization of Brz-LPNs,optimal Brz-LPNs showed an average particle size of151.23±1.64 nm with a high encapsulation efficiency(EE) of 86.7%±2.28%.The core-shell structure of Brz-LPNs were confirmed by transmission electronic microscopy(TEM).Fourier transformed infrared spectra(FTIR) analysis proved that Brz was successfully entrapped into Brz-LPNs.Brz-LPNs exhibited obvious sustained release of Brz,compared with AZOPT^■ and Brz-LPs.Furthermore,the corneal accumulative permeability of Brz-LPNs significantly increased compared to the commercial available formulation(AZOPT^■) in vitro.Moreover,Brz-LPNs(1 mg/mL Brz) showed a more sustained and effective intraocular pressure(IOP) reduction than Brz-LPs(1 mg/mL) and AZOPT^■(10 mg/mL Brz) in vivo.In conclusion,Brz-LPNs,as promising ocular drug delivery systems,are well worth developing in the future for glaucoma treatment.  相似文献   

11.
Scandium-benzene complexes, Sc-(C6H6)1,2 are produced by interactions between the laser-vaporized scandium atoms and benzene vapor in pulsed molecular beams, and identified by photoionization time-of-flight mass spectrometry and photoionization efficiency spectroscopy. The electron-spin multiplicities and geometries of these complexes and their ions are determined by combining pulsed field-ionization zero electron kinetic-energy spectroscopy and density-functional theory calculations. For scandium-monobenzene, a short-range quartet ground state is determined for the neutral complex, and a low-energy triplet state is probed for the ion. For the dibenzene complex, the neutral ground state is a doublet, and two low-energy ion states are singlet and triplet. The quartet and triplet states of scandium-monobenzene and the triplet state of scandium-dibenzene possess sixfold symmetry, whereas the doublet and singlet of the dibenzene complex have twofold symmetry. Moreover, ionization energies and metal-ring stretching wavenumbers are measured for both complexes.  相似文献   

12.
A hybrid density functional approach with very large basis sets was used for studying Ca2 through Ca19 and Zn3 through Zn11 neutral clusters and their cluster anions. Energetics, structure, and vibrational analysis of all these neutral clusters and cluster anions are reported. The calculated electron affinities are in excellent agreement with experiment displaying a characteristic kink at Ca10 and Zn10. This kink occurs because the 10-atom neutral cluster is very stable whereas the cluster anion is not. Additionally, the electron detachment binding energies (BEs) up to Ca6(-) and Zn6(-) were identified by analyzing the ground and excited states of the cluster anions and of their corresponding size neutral clusters. The theoretical BE is in very good agreement with experiment for both calcium and zinc cluster anions. The three main peaks in the spectrum correspond to BEs from the ground state of the cluster anion (doublet) to the ground state of the neutral cluster (singlet) and to the first triplet and quintet excited states of the neutral cluster. The calculated energy gap from the lowest BE peak to the second peak is in excellent agreement with experiment. The calculation reproduces very well the energy gap observed in Ca4(-) and Zn4(-), which is larger than those for other sizes and is indicative of the strong stability of the anion and neutral tetramers.  相似文献   

13.
采用密度泛函理论的四种方法:杂化密度泛函B3LYP与B3PW91、Perdew-Wang91交换与相关泛函WP91PW91、局域自旋密度近似SVWN,研究了A15、Al5-和Al5+团簇的多种可能结构,找到了它们稳定的结构与自旋态,与已有的理论结果作了比较,并计算了Al5-的绝热与垂直电子离解能、Al5的绝热与垂直电离势,同有关的实验数据比较,符合较好.同时对四种密度泛函方法的计算结果作了一些比较与讨论.  相似文献   

14.
Infrared spectra of three new thorium oxide species have been obtained in argon and neon matrixes. All of the products are experimentally characterized using isotopic oxygen samples with the aid of electronic structure calculations. Ground state thorium atoms react with O(2) to form the ThO(2) molecules, which can dimerize to give Th(2)O(4) products. Th(2)O(4) is predicted to have nonplanar C(2h) symmetry for its closed shell singlet ground state. The rhombus-shaped Th(2)O(2) molecule in the (1)A(g) (D(2h)) ground state is also observed and its formation is proposed via the reaction of Th(2) with O(2). In addition, electron capture of neutral thorium dioxide results in the formation of the ThO(2)(-) anion. It is predicted to have a doublet ground state with a geometry similar to that of the neutral ThO(2) molecule. Electronic structure calculations on the unobserved Th(2)O and Th(2)O(3) molecules are also provided.  相似文献   

15.
The geometries, energetics and spectroscopic properties of oxygen clusters, Oxy(x=2~6, y=-2~2), were investigated at the B3LYP/6-311G (d, p) level. The CASSCF calculations were carried out for the ground and excited states of3O2and2O2+. The total energy is3O2(3Σg-)<2O2-(2Πgi)<1O2(1Δg)<1O2-2(1Σg+)<2O2+(2Πg)<1O2+2(1Σg+). The relative energy of the active doublet anion of oxygen molecule,2O2-(2Πgi), is only 28 kJ/mol higher than the triplet neutral oxygen molecule,3O2(3Σg-). The calculated O-O vibrational frequencies all are in good agreement with the experimental values. They are 1577 (1580), 1139 (1090), 1563 (1484), 627 (615~545) and 1993 (1905) cm-1, where the O-O vibrational frequency values in parentheses are experimental values, for3O2(3Σg-),2O2-(2Πgi),1O2(1Δg),1O2-2(1Σg+) and2O2+(2Πg), respectively. Moreover, the O-O vibrational frequency of1O2+2(1Σg+) was computed as 2368 cm-1which has not been reported before at both experimental and theoretical levels. Both bent and linear geometries of O3were studied. The bent-types of O3are more favorable than the linear-type in energy. Three types of structure for oxygen trimers are calculated at the B3LYP/6-311G (d, p) level. They are the structure-I with an obtuse angle of O-O-O,the structure-II with an acute angle of O-O-O, and the structure-III of linear type. For a bent-type structure of O3species (structure-I), the total enegy is2O3-(2B1)<1O3(1A1)<3O3(3B2)<1O3-2(1A1)<2O3+(2A1). The optimization of geometry at B3LYP/6-311G (d, p) level indicated that the species of2O3-(2B1) with 1.3573 of O-O bond length and 115.6584o of O-O-O bond anger is the ground state of O3. The total energy of O4species and their ions is2O4-(Cs,2A′, bend-type)<2O4-(C2v,2A2,face-centered triangle-type)<2O4-(D∞h,2Σg, linear-type)<1O4(Cs,1A′, bend-type)<1O4(D∞h,1Σg, linear-type)<1O4(D4h,1A1g, square-type)<1O4(C2v,1A1, face-centered triangle-type)<2O4-(D4h,1A1g, square-type)<2O4+(D∞h,2Σg, linear-type)<2O4+(Cs,1A′, bend-type). The species with the lowest relative energy is an anion,2O4-(Cs,2A′, bendtype), with chair form geometry and characteristic vibronic frequencies of 1179 and 1349 cm-1. The relative energy of1O5(C2v,1A1) with coplanar-triangle-bicone geometry is the lowest among the O5species and their ions, which may be a resonance structure with1O5(C2v,1A1) of A type. Their characteristic vibronic frequency is 1302 cm-1. The relative energy of the O6species and their ions with hexagon geometry is lower than one with linear geometry. Their infrared vi-bronic intensity may be weak and unobservable but the Raman vibronic intensity may be strong and observable based on their symmetry.  相似文献   

16.
Electronic mechanism of the reversible O(2) binding by heme was studied by using Density Functional Theory calculations. The ground state of oxyheme was calculated to be open singlet state [Fe(S =1/2) + O(2)(S = 1/2)]. The potential energy surface for singlet state is associative, while that for triplet state is dissociative. Because the ground state of the O(2)+ deoxyheme system is triplet in the dissociation limit [Fe(S = 2) + O(2)(S = 1)], the O(2) binding process requires relativistic spin-orbit interaction to accomplish the intersystem crossing from triplet to singlet states. Owing to the singlet-triplet crossing, the activation energies for both O(2) binding and dissociation become moderate, and hence reversible. We also found that the deviation of the Fe atom from the porphyrin plane is also important reaction coordinate for O(2) binding. The potential surface is associative/dissociative when the Fe atom locates in-plane/out-of-plane.  相似文献   

17.
A theoretical study of the ScCn, ScCn+, and ScCn- (n = 1-8) open-chain clusters has been carried out. Predictions for their electronic energies, rotational constants, dipole moments and vibrational frequencies have been made using the B3LYP method with different basis set including effective core potentials, ECPs. For the ScCn open-chain clusters the lowest-lying states correspond to quartet states for n-odd members, whereas for n-even species the ground state is found to be a doublet. In the cationic and anionic species, the electronic ground state is found to be a singlet for even n and a triplet for odd n. An even-odd parity effect (n-even clusters being more stable than n-odd ones) is observed in neutral and charged clusters. Ionization energies and electron affinities also exhibit a clear parity alternation trend, with n-even clusters having higher values than n-odd ones.  相似文献   

18.
A systematic and unbiased structure search based on a genetic algorithm in combination with density functional theory (DFT) procedures has been carried out to locate low-energy isomers of Ga(n) up to n = 25. For the smaller clusters up to n = 8 results are checked by coupled cluster singles and doubles with perturbative triples corrections (CCSD(T)) employing a quadruple zeta type basis set. The CCSD(T) calculations confirm a (3)Π(u) ground state for the dimer. Ga(3) has a doublet ground state 0.2 eV below two quartet states, whereas two isoenergetic triplet states are predicted for Ga(4) with D(4h) and a rhombus structure (D(2h)). Three low-lying isomers with doublet electronic states are found for Ga(5): a W-structure (C(2v)), a planar envelope (C(s)) at 0.015 eV, and a non-planar envelope (C(1)) 0.086 eV above the ground state. A triplet state for a trigonal prism (D(3h)) and a singlet for an open prism (C(2v)) are computed with virtually identical energy for Ga(6). The global minimum for Ga(7) is a capped trigonal prism (C(s)) and that for Ga(8) a distorted cube in D(2h). DFT provides a fair agreement with CCSD(T), deviations in dissociation energies are up to 0.2 eV for n ≤ 8. The structures for Ga(n) are mostly irregular for n ≥ 9, those for Ga(12) to Ga(17) can be derived from the truncated decahedron with D(5h) symmetry though highly distorted by Jahn-Teller effects, for example. For Ga(18) to Ga(23) we find stacks of five- and six-membered rings as global minima, e.g., 5-1-5-1-6 for Ga(18). Ga(24) and Ga(25) consist of layers with packing sequence ABCBA similar to those found for clusters of aluminum. The most important feature of computed cohesive energies is a rapid increase with n: for Ga(25) it reaches 2.46 eV, the experimental bulk value is 2.84 eV. Particularly stable clusters for Ga(n) are seen for n = 7, 14, and 20.  相似文献   

19.
Cu3(O2C16H23)6.1.2C6H12, containing a Cu36+ core in an equilateral triangle geometry, has been found to be a versatile model system for investigating the spin-frustration phenomenon in a triangular lattice. It affords well-resolved EPR spectra from both of the two possible (Stotal = 1/2 and 3/2) spin states of the Cu36+ core. From 295 to 100 K, the spectra consist of a triplet, but with the central line overlapped by an additional, sharp peak, which replaces the triplet at 30 K and below. The triplet was thus assigned to the excited state with Stotal = 3/2, located at 324 +/- 5 K ( approximately 225 cm-1), with the zero-field parameters D = -535 G, E = 0, g parallel = 2.209 and g perpendicular = 2.057. The singlet was attributed to the Stotal = 1/2 state, with gxx = 2.005, gyy = 2.050, gzz = 2.282, and, surprisingly, a hyperfine splitting arising from a single Cu2+ nucleus, with Azz = 157 G. The detailed magnetic measurements on a three-electron, equilateral triangular system, and the observation of symmetry lowering in the doublet ground state, should be of broad theoretical and experimental interest in molecular magnetism.  相似文献   

20.
基于MP2/6-311+G(d)水平, 分别对过渡金属Ti和碱金属Na与O2的反应机理进行了研究. 比较了Ti和Na分别以垂直O—O键和沿着O—O键的方向逼近O2, 以及中性体系Ti/Na+O2和带1个负电荷的体系(Ti/Na+O2)-的情况. 详细分析了不同反应路径的结合能和电荷变化的曲线, 预测了最佳反应方式. 结果表明, 垂直接近方式要比水平接近方式更具有优势; 体系带一个负电荷(Ti/Na+O2)-有利于金属与O2的结合. 同时, 计算结果表明在Ti+O2和(Ti+O2)-体系中Ti容易与单态的O2结合; 在中性体系中Na也容易与单态O2结合, 而在(Na+O2)-体系中Na与三态O2的结合更稳定. 在CCSD(T)/6-311++G(3df)//MP2/6-311+G(d)水平下, 计算了Ti+O2和(Ti+O2)-的反应势能面.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号