首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
煤层气在非饱和水流阶段的非定常渗流摄动解   总被引:3,自引:0,他引:3  
煤层甲烷由煤层的割理裂隙系统流入生产井一般经历:单相水流、非饱和流和气、水两相饱和流三个阶段,在非饱和流阶段,储层压力降至临界解吸压力之后,储存在煤基质中的吸附气体少量被解吸出来形成互不连续的气泡并阻止水的流动,含气量尚未达到饱和程度。同时煤层甲烷运移包含渗流场、变形场和应力场的动态耦合过程。本文考虑渗流过程中水-气两相不溶混流体与固体耦合作用,建立了非饱和水流阶段非定常渗流问题的流固耦合数学模型,对该强非线性一维数学模型采用摄动法和积分变换法进行解析求解,并讨论了其压力动态特性,分析了压力随饱和度S及时间t变化的规律和气相及耦合作用的影响,这些研究对煤层气、石油和天然气的开采等地下工程领域具有一定的指导意义。  相似文献   

2.
Zhao  Yangsheng  Hu  Yaoqing  Zhao  Baohu  Yang  Dong 《Transport in Porous Media》2004,55(2):119-136
Based on detailed investigation into the interactional physical mechanism of solid deformations and gas seepage in rock matrix and fracture, a nonlinear coupled mathematical model of solid deformation and gas seepage is put forward and the FEM model is built up to carry out numerical analysis. The coupled interaction laws between solid deformations and gas seepage in rock matrix and fractures has been emphasized in the model, which is a vital progress for coupled mathematical model of solid deformation and gas seepage of rock mass media. As an example, the methane extraction in fractured coal seam has been numerically simulated. By analyzing the simulation results, the law of methane migration and exchange in rock matrix and fractures is interpreted.  相似文献   

3.
A thermomechanical theory for multiphase transport in unsaturated swelling porous media is developed on the basis of Hybrid Mixture Theory (saturated systems can also be modeled as a special case of this general theory). The aim is to comprehensively and non-empirically describe the effect of viscoelastic deformation on fluid transport (and vice versa) for swelling porous materials. Three phases are considered in the system: the swelling solid matrix s, liquid l, and air a. The Coleman–Noll procedure is used to obtain the restrictions on the form of the constitutive equations. The form of Darcy’s law for the fluid phase, which takes into account both Fickian and non-Fickian transport, is slightly different from the forms obtained by other researchers though all the terms have been included. When the fluid phases interact with the swelling solid porous matrix, deformation occurs. Viscoelastic large deformation of the solid matrix is investigated. A simple form of differential-integral equation is obtained for the fluid transport under isothermal conditions, which can be coupled with the deformation of the solid matrix to solve for transport in an unsaturated system. The modeling theory thus developed, which involves two-way coupling of the viscoelastic solid deformation and fluid transport, can be applied to study the processing of biopolymers, for example, soaking of foodstuffs and stress-crack predictions. Moreover, extension and modification of this modeling theory can be applied to study a vast variety of problems, such as drying of gels, consolidation of clays, drug delivery, and absorption of liquids in diapers.  相似文献   

4.
A Finite Element Method in mixed Eulerian and Lagrangian formulation is developed to allow direct numerical simulations of dynamical interaction between an incompressible fluid and a hyper-elastic incompressible solid. A Fictitious Domain Method is applied so that the fluid is extended inside the deformable solid volume and the velocity field in the entire computational domain is resolved in an Eulerian framework. Solid motion, which is tracked in a Lagrangian framework, is imposed through the body force acting on the fluid within the solid boundaries. Solid stress smoothing on the Lagrangian mesh is performed with the Zienkiewicz–Zhu patch recovery method. High-order Gaussian integration quadratures over cut elements are used in order to avoid sub-meshing within elements in the Eulerian mesh that are intersected by the Lagrangian grid. The algorithm is implemented and verified in two spatial dimensions by comparing with the well validated simulations of solid deformation in a lid driven cavity and periodic elastic wall deformation driven by a time-dependent flow. It shows good agreement with the numerical results reported in the literature. In 3-D the method is validated against previously reported numerical simulations of 3-D rhythmically contracting alveolated ducts.  相似文献   

5.
We propose a computational method for approximating the heat transfer coefficient of fully-developed flow in porous media. For a representative elementary volume of the porous medium we develop a transport model subject to periodic boundary conditions that describes incompressible fluid flow through a uniformly heated porous solid. The transport model uses a pair of pore-scale energy equations to describe conjugate heat transfer. With this approach, the effect of solid and fluid material properties, such as volumetric heat capacity and thermal conductivity, on the overall heat transfer coefficient can be investigated. To cope with geometrically complex domains we develop a numerical method for solving the transport equations on a Cartesian grid. The computational method provides a means for approximating the heat transfer coefficient of porous media where the heat generated in the solid varies “slowly” with respect to the space and time scales of the developing fluid. We validate the proposed method by computing the Nusselt number for fully developed laminar flow in tubes of rectangular cross section with uniform wall heat flux. Detailed results on the variation of the Nusselt number with system parameters are presented for two structured models of porous media: an inline and a staggered arrangement of square rods. For these configurations a comparison is made with literature on fully-developed flows with isothermal walls.  相似文献   

6.
We describe the formulation of a method for fluid-structure interaction involving the coupling of moving and/or flexible solid structures with multiphase flows in the framework of the Level Contour Reconstruction Method. We present an Eulerian-based numerical procedure for tracking the motion and interaction of a liquid-gas interface with a fluid-solid interface in the Lagrangian frame together with the evaluation of the fluid transport equations coupled to those for the solid transport, namely the left Cauchy-Green strain tensor field, in the Eulerian frame. To prevent excessive dissipation due to the convective nature of the solid transport equation, a simple incompressibility constraint for the strain field is enforced. A single grid structure is used for both the fluid and solid phases which allows for a simple and natural coupling of the fluid and solid dynamics. Several benchmark tests are performed to show the accuracy of the numerical method and which demonstrate accurate results compared to several of those in the existing literature. In particular we show that surface tension effects including contact line dynamics on the deforming solid phase can be properly simulated. The three-phase interaction of a droplet impacting on a flexible cantilever is investigated in detail. The simulations follow the detailed motion of the droplet impact (and subsequent deformation, breakup, and fall trajectory) along with the motion of the deformable solid cantilever due to its own weight as well as due to the force of the droplet impact.  相似文献   

7.
A system of model equations coupling fluid flow, deformation of solid structure and chemical reactions is formulated starting from processes in biological tissue. The main aim of this paper is to analyse this non-standard system, where the elasticity modules are functionals of a concentration and the diffusion coefficients of the chemical substances are functions of their concentrations. A new approach and new methods are required and adapted to these nonlinearities and the transmission conditions on the interface solid–fluid. Strong solutions for the initial and boundary value problem are constructed under suitable regularity assumptions on the data, and stability estimates of the solutions with respect to the initial and boundary values are proved. These estimates imply uniqueness directly. The approach of the paper can be used in more general problems modeling reactive flow and transport and its interaction with elastic cell structures. In a forthcoming paper the approach of this paper is used for getting the upscaled system modeling reactive flow through biological tissue on the macroscopic scale, starting from a system on the cell level.  相似文献   

8.
对含液颗粒材料流固耦合分析建议了一个基于离散颗粒模型与特征线SPH法的显式拉格朗日-欧拉无网格方案。在已有的用以模拟固体颗粒集合体的离散颗粒模型[1]基础上,将颗粒间间隙内的流体模型化为连续介质,对其提出并推导了基于特征线的SPH法。数值例题显示了所建议方案在模拟颗粒材料与间隙流相互作用的能力和性能以及间隙流体对颗粒结构承载能力及变形的影响。  相似文献   

9.
对于微型设备中的低雷诺数流动,毛细力和黏性力起主导作用. 应用相场方法,引入自由能泛函,研究了二相流体在微型管中流动问题及表面浸润现象,并给出了微型管中二相流体的无量纲输运方程. 针对方形微管道,利用差分法给出了输运方程的数值求解方法.最后,模拟了方形直管中的液滴流动和变形的过程,并给出了液滴前后压力差与其它主要物理参数之间的变化关系. 结果表明,压力差随液滴半径增大而增加,而随毛细管系数的增大而减小.  相似文献   

10.
Inhomogeneous forcing functions, in the governing equations for linearized coupled deformation and pore-fluid diffusion, are characterized directly and via reciprocity theorem; inelastic straining or porosity changes, body-forces on fluid or solid and arbitrary fluid injection all elicit a response composed by appropriate distribution of point-force and fluid-source densities. The complete set of fundamental influence functions is established (via symmetry arguments) for an isotropic medium, so transparently that basic solutions for dipoles and point plasticity (slip or dilation) follow simply: the simulation of arbitrary anomalous zones of inelasticity is made rigorous in the process of proving dipole-equivalency for plasticity. Analytical and numerical implementation, for simulation of fracture phenomena in fluid-saturated porous media, is emphasized.  相似文献   

11.
12.
A two-scale theory for the swelling biopolymeric media is developed. At the microscale, the solid polymeric matrix interacts with the solvent through surface contact. The relaxation processes within the polymeric matrix are incorporated by modeling the solid phase as viscoelastic and the solvent phase as viscous at the mesoscale. We obtain novel equations for the total stress tensor, chemical potential of the solid phase, heat flux and the generalized Darcy's law all at the mesoscale. The constitutive relations are more general than those previously developed for the swelling colloids. The generalized Darcy's law could be used for modeling non-Fickian fluid transport over a wide range of liquid contents. The form of the generalized Fick's law is similar to that obtained in earlier works involving colloids. Using two-variable expansions, thermal gradients are coupled with the strain rate tensor for the solid phase and the deformation rate tensor for the liquid phase. This makes the experimental determination of the material coefficients easier and less ambiguous.  相似文献   

13.
It is shown that the convective transport in a binary mixture in the presence of vortex convection can be described in terms of Fick’s law with an effective diffusion coefficient independent of the concentration. The form of the effective diffusion coefficient is found for arbitrary convection in the mixture. A generalization of the Stefan-Maxwell diffusion equation is proposed to include an arbitrary rotational mixture velocity field. The characteristics of convective transport are considered with reference to a three-component mixture. A solution of the equation of three-component mixture transport through a long capillary in the presence of convection homogeneous along the capillary axis is presented. It is established that for sharply different component diffusion coefficients a mixture density extremum may appear inside the capillary and then change or disappear depending on the convective flow intensity.  相似文献   

14.
A new accurate high-order numerical method is presented for the coupled transport of a passive scalar (concentration) by advection and diffusion. Following the method of characteristics, the pure advection problem is first investigated. Interpolation of the concentration and its first derivative at the foot of the characteristic is carried out with a fifth-degree polynomial. The latter is constructed by using as information the concentration and its first and second derivatives at computational points on current time level t in Eulerian co-ordinates. The first derivative involved in the polynomial is transported by advection along the characteristic towards time level t + Δt in the same way as is the concentration itself. Second derivatives are obtained at the new time level t + Δt by solving a system of linear equations defined only by the concentrations and their derivatives at grid nodes, with the assumption that the third-order derivatives are continuous. The approximation of the method is of sixth order. The results are extended to coupled transport by advection and diffusion. Diffusion of the concentration takes place in parallel with advection along the characteristic. The applicability and precision of the method are demonstrated for the case of a Gaussian initial distribution of concentrations as well as for the case of a steep advancing concentration front. The results of the simulations are compared with analytical solutions and some existing methods.  相似文献   

15.
A fluid-structure interaction system subject to Sommerfeld's condition is defined as a Sommerfeld system which is divided into three categories: Fluid Sommerfeld (FS) System, Solid Sommerfeld (SS) System and Fluid Solid Sommerfeld (FSS) System of which Sommerfeld conditions are imposed on a fluid boundary only, a solid boundary only and both fluid and solid boundaries, respectively. This paper follows the previous initial results claimed by simple examples to further mathematically investigate the natural vibrations of generalized Sommerfeld systems. A new parameter representing the speed of radiation wave for generalized 3-D problems with more complicated boundary conditions is introduced into the Sommerfeld condition which allows investigation of the natural vibrations of a Sommerfeld system involving both free surface and compressible waves. The mathematical demonstrations and selected examples confirm and reveal the natural behaviour of generalized Sommerfeld systems defined above. These generalized conclusions can be used in theoretical or engineering analysis of the vibrations of various Sommerfeld systems in engineering.  相似文献   

16.
在全球气候变化和双碳政策的大背景下,多孔介质中固体的变形和流体的输运问题变得尤为重要。然而,在多孔介质中建立流固耦合模型仍面临的挑战之一是需要考虑跨越宏观尺度到纳米尺度的耦合作用。本文利用基于非平衡热力学的混合耦合理论,提出了一个弹塑性多孔介质流固耦合新模型,在同一个理论框架内研究了弹性变形、塑性变形和液体渗流之间跨尺度的耦合,考虑了耗散过程中的熵产,并利用Helmholtz自由能来连接宏观尺度上的力学变形和纳米尺度上的液体输运之间的相互作用。在应力-应变关系中采用了弹塑性刚度系数以反映塑性的影响。同时,经典的达西定律扩展为考虑固体的塑性变形。通过与文献中模型的比较,验证了该模型的有效性。最后,数值分析表明在多孔介质的流固耦合中塑性变形具有比较显著的影响。  相似文献   

17.
18.
Poromechanics offers a consistent theoretical framework for describing the mechanical response of porous solids, fully or partially saturated with a fluid phase. When dealing with fully saturated microporous materials, which exhibit pores of the nanometre size, aside from the fluid pressure acting on the pore walls additional effects due to adsorption and confinement of the fluid molecules in the smallest pores must be accounted for. From the mechanical point of view, these phenomena result into volumetric deformations of the porous solid: the so-called “swelling” phenomenon. The present work investigates how the poromechanical theory should be refined in order to describe adsorption and confinement induced swelling in microporous solids. Firstly, we report molecular simulation results that show that the pressure and density of the fluid in the smallest pores are responsible for the volumetric deformation of the material. Secondly, poromechanics is revisited in the context of a microporous material with a continuous pore size distribution. Accounting for the thermodynamic equilibrium of the fluid phase in the overall pore space, the new formulation introduces an apparent porosity and an interaction free energy. We use a prototype constitutive relation relating these two quantities to the Gibbs adsorption isotherm, and then calculate the induced deformation of the solid matrix. Agreement with experimental data found in the literature is observed. As an illustrating example, we show the predicted strains in the case of adsorption of methane on activated carbon.  相似文献   

19.
A new thermodynamics of open thermochemical systems and a variational principle of virtual dissipation are applied to the finite deformation of a solid coupled to thermomolecular diffusion and chemical reactions. A variational derivation is obtained of the field differential equations as well as Lagrangian equations with generalized coordinates. New formulas for the affinity and a new definition of the chemical potential are presented. An outline is given of an unusually large field of applications, such as active transport in biological systems, finite element methods, plastic properties as analogous to chemical reactions, phase changes and recrystalization, porous solids, heredity and initially stressed solids. A new and unified insight is thus provided in highly diversified problems.  相似文献   

20.
The changes of blood perfusion and oxygen transport in tumors during tumor vascular normalization are studied with 3-dimensional mathematical modeling and numerical simulation. The models of tumor angiogenesis and vascular-disrupting are used to simulate "un-normalized" and "normalized" vasculatures. A new model combining tumor hemodynamics and oxygen transport is developed. In this model, the intravasculartransvascular-interstitial flow with red blood cell(RBC) delivery is tightly coupled, and the oxygen resource is produced by heterogeneous distribution of hematocrit from the flow simulation. The results show that both tumor blood perfusion and hematocrit in the vessels increase, and the hypoxia microenvironment in the tumor center is greatly improved during vascular normalization. The total oxygen content inside the tumor tissue increases by about 67%, 51%, and 95% for the three approaches of vascular normalization,respectively. The elevation of oxygen concentration in tumors can improve its metabolic environment, and consequently reduce malignancy of tumor cells. It can also enhance radiation and chemotherapeutics to tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号