首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports the results of numerical modeling of the magnetic dipole moment produced by displacement of the Earth's magnetic field in a onekiloton underground nuclear explosion in a cavity. It is shown that with increase in cavity size, the magnetic dipole moment increases, reaching 107 A · m2, which is approximately 200 times the magnetic dipole moment from a camouflet explosion. A factor of 100 decrease in the initial air density in cavities with radii of 10 and 20 m results in a reversal of the direction of the magnetic dipole moment vector.  相似文献   

2.
A field-modulated electroosmotic flow (FMEOF) in a microchannel can be obtained by applying modulating electric fields in a direction perpendicular to the channel wall. Micro-vortexes are generated around the electrodes along with an EOF due to the surface charge on the modulated wall. When polarizable particles are suspended near the electrodes, they experience dielectrophoretic forces due to a non-uniform electric field. In this paper, micro-vortexes and dielectrophoretic forces are combined to achieve separation and trap different sized particles in a continuous flow. Numerical results indicate that by adjusting the driving electric field parallel to the channel wall and the modulating electric field, the ratio of dielectrophoretic and hydrodynamic forces can be altered. One type of particles can be trapped by micro-vortexes (negative dielectrophoresis (DEP)), and the other particles are transported to the downstream so that the particles are separated. The influence of the electrode length and the channel height on the trapping rate is investigated.  相似文献   

3.
Manipulation of particles using dielectrophoresis   总被引:2,自引:0,他引:2  
A numerical scheme based on the distributed Lagrange multiplier method (DLM) is used to study the motion of particles of electrorheological suspensions subjected to non-uniform electric fields. At small Reynolds number, the time taken by the particles to collect at the minimums or maximums of the electric field is primarily determined by a parameter defined to be the ratio of the dielectrophoretic and viscous forces. Simulations show that in non-uniform electric fields the collection time is also influenced by a parameter defined by the ratio of the electrostatic particle–particle interaction and dielectrophoretic forces. The collection time decreases as this parameter decreases because when this parameter is less than one, particles move to the regions of high or low electric field regions individually. However, when this parameter is greater than one, particles regroup into chains which then move toward the electric field maximums or minimums without breaking. It is also shown that when the real part of the Clausius–Mosotti factor (β) is negative the positions of the local minimums of the electric field, and thus also the locations where particles collect, can be modified by changing the electric potential boundary conditions.  相似文献   

4.
The combination of an electric field and a moderate turbulent flow is a promising technique for separating stable water–oil emulsions. Field-induced charges on the water droplets will cause adjacent droplets to align with the field and attract each other. The present work describes the forces that influence the kinematics of droplets falling in oil when exposed to an electric field. Mathematical models for these forces are presented and discussed with respect to a possible implementation in a multi-droplet Lagrangian framework. The droplet motion is mainly due to buoyancy, drag, film-drainage, and dipole–dipole forces. Attention is paid to internal circulations, non-ideal dipoles, and the effects of surface tension gradients.Experiments are performed to observe the behavior of a droplet falling onto a stationary one. The droplet is exposed to an electric field parallel to the direction of the droplet motion. The behavior of two falling water droplets exposed to an electric field perpendicular to the direction of their motion is also investigated until droplet coalescence. The droplet motion is recorded with a high-speed CMOS camera. The optical observations are compared with the results from numerical simulations where the governing equations for the droplet motion are solved by the RK45 (Runge Kutta) Fehlberg method with step-size control and low tolerances. Results, using different models, are compared and discussed in detail. A framework is otlined to describe the kinematics of both a falling rigid spherical particle and a fluid droplet under the influence of an electric field.  相似文献   

5.
The chaining process of a system of interacting carbon nanotubes (CNTs) under an alternating current electric field is investigated at two regions of different electric field characteristics. For the region of uniform electric field (far from the electrodes), a two-dimensional multiparticle approach based on the dielectrophoretic (DEP) theory and classical mechanics is proposed to investigate the CNT rotational and translation motion. For this scenario, CNT rotation and alignment along the electric field direction occurs first, followed by the translation and chaining processes which were found to be highly dependent on the CNT-to-CNT initial configuration. On the other hand, the presence of high electric field gradients governs the CNT chaining at regions near the electrodes. DEP forces caused by such gradients were computed by finite element analysis and compared to the magnitude of the CNT-to-CNT interacting forces at zones of uniform electric fields. A critical distance of CNT-to-CNT separation was estimated, which determines if a CNT is attracted towards the electrode or if it is attracted by other CNTs away from the electrodes. Experimental evidence of CNTs dynamic motion under electric fields is presented to support the predicted trends.  相似文献   

6.
A Lagrangian perturbation approach has been applied to develop the method of moments for predicting mean and variance of solute flux through a three-dimensional nonstationary flow field. The flow nonstationarity may stem from medium nonstationarity, finite domain boundaries, and/or fluid pumping and injecting. The solute flux is described as a space–time process where time refers to the solute flux breakthrough and space refers to the transverse displacement distribution at the control plane. The analytically derived moment equations for solute transport in a nonstationary flow field are too complicated to solve analytically, a numerical finite difference method is implemented to obtain the solutions. This approach combines the stochastic model with the flexibility of the numerical method to boundary and initial conditions. This method is also compared with the numerical Monte Carlo method. The calculation results indicate the two methods match very well when the variance of log-conductivity is small, but the method of moment is more efficient in computation.  相似文献   

7.
The interaction between crack and electric dipole of piezoelectricity   总被引:4,自引:0,他引:4  
Discrete dipoles located near the crack tip play an important role in nonlinear electric field induced fracture of piezoelectric ceramics. A physico-mathematical model of dipole is constructed of two generalized concentrated piezoelectric forces with equal density and opposite sign. The interaction between crack and electric dipole in piezoelectricity is analyzed. The closed form solutions, including those for stress and electric displacement, crack opening displacement and electric potential, are obtained. The function of piezoelectric anisotropic direction,p a (θ)=cosθ+p a sinθ, can be used to express the influence of a dipole's direction. In the case that a dipole locates near crack tip, the piezoelectric stress intensity factor is a power function with −3/2 index of the distance between dipole and crack tip. Supported by National Natural Science Foundation of China(No. 10072033)  相似文献   

8.
侧向多喷口干扰复杂流动数值模拟研究   总被引:3,自引:0,他引:3  
采用具有高分辨率的NND格式,通过数值求解N-S方程对典型外形多喷口侧向喷流复杂干扰流动进行了数值模拟. 为了提高计算效率,采用了LU-SGS隐式算法. 采用分块对接网格技术,生成高质量的贴体计算网格,精确模拟喷口截面. 对比分析了不同计算格式、限制器形式、网格拓扑及流动形态(层流与湍流)对喷流干扰流场结构和压力分布特性的影响,研究和分析了喷口附近流场的涡系结构、波系结构和喷流干扰引起的气动力特性. 在上述研究的基础上,针对典型飞行器外形的侧向喷流干扰特性进行了详细的数值模拟,得到了喷口参数(喷口位置、数目等)及来流条件对喷流干扰流场结构、气动力特性的影响规律,并对其流动机理进行了相应的分析. 研究表明,发展的针对多喷口侧喷干扰的数值计算方法是成功的,可以应用于飞行器侧向喷流干扰的流场结构分析及气动力特性数值预测.   相似文献   

9.
张凯  林建忠  聂德明 《力学学报》2010,42(4):629-636
助欧拉和拉格朗日方法数值模拟了突扩微尺度管道流中微米颗粒的分离情况. 在采用有限体积法求解电荷密度场、电场和流场的基础上,通过基于改进的Langevin方程研究了微管道中不同位置处的微米颗粒在水动力和介电电泳力综合作用下的运动轨迹. 研究发现:电渗流的驱动能力随着扩张比(ER)的增加而提高,然而其提高的趋势逐渐变小;当微米颗粒仅在水动力作用下时,随着ER的增加,颗粒之间的有效分离距离(ESL)随之线性增加,此时ESL与ER的比值约为5.9; 若是考虑介电电泳力对于微米颗粒运动的影响, ESL与ER的比值下降为4.79, 由此可以看出介电电泳力对突扩微管道流中的微米颗粒的分离效果有着一定的负面影响. 上述结论对于基于介电电泳技术设计的生物粒子分离芯片的优化设计有很大价值.   相似文献   

10.
In the present study, we have proposed an immersed‐boundary finite‐volume method for the direct numerical simulation of flows with inertialess paramagnetic particles suspended in a nonmagnetic fluid under an external magnetic field without the need for any model such as the dipole–dipole interaction. In the proposed method, the magnetic field (or force) is described by the numerical solution of the Maxwell equation without current, where the smoothed representation technique is employed to tackle the discontinuity of magnetic permeability across the particle–fluid interface. The flow field, on the other hand, is described by the solution of the continuity and momentum equations, where the discrete‐forcing‐based immersed‐boundary method is employed to satisfy the no‐slip condition at the interface. To validate the method, we performed numerical simulations on the two‐dimensional motion of two and three paramagnetic particles in a nonmagnetic fluid subjected to an external uniform magnetic field and then compared the results with the existing finite‐element and semi‐analytical solutions. Comparison shows that the proposed method is robust in the direct simulation of such magnetic particulate flows. This method can be extended to more general flows without difficulty: three‐dimensional particulate flows, flows with a great number of particles, or flows under an arbitrary external magnetic field. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Experimental analysis of particle and fluid motion in ac electrokinetics   总被引:4,自引:0,他引:4  
An ac electric field is applied to induce particle and fluid motion in a wedge-shaped microchannel. Micron-resolution particle image velocimetry (-PIV) is used to determine spatially resolved particle velocity and fluid velocity fields. Under steady-state conditions, the particles experience a balance between dielectrophoretic forces induced by the nonuniform electric field and Stokes drag forces due to viscous interactions with the fluid. The particle velocity is therefore different from the fluid velocity because of dielectrophoresis. A variant of -PIV, two-color -PIV, is developed and used to uniquely determine the fluid velocity from the observation of particles without a priori knowledge of the electrical properties. This technique is used to explore ac electrokinetically generated fluid motion. A series of voltage levels at fixed frequency are applied to the wedge-shaped electrodes. The dependency of fluid velocity on applied voltage at different regions in the flow is obtained by fitting power-law curves. This is used to determine the underlying physical phenomena associated with ac electrokinetics. We found that both electrothermal effects and ac electroosmosis are important for the current experimental conditions. However, the electrothermal effect is dominant in the bulk fluid.  相似文献   

12.
This paper presents a computational model for free surface flows interacting with moving rigid bodies. The model is based on the SPH method, which is a popular meshfree, Lagrangian particle method and can naturally treat large flow deformation and moving features without any interface/surface capture or tracking algorithm. Fluid particles are used to model the free surface flows which are governed by Navier–Stokes equations, and solid particles are used to model the dynamic movement (translation and rotation) of moving rigid objects. The interaction of the neighboring fluid and solid particles renders the fluid–solid interaction and the non‐slip solid boundary conditions. The SPH method is improved with corrections on the SPH kernel and kernel gradients, enhancement of solid boundary condition, and implementation of Reynolds‐averaged Navier–Stokes turbulence model. Three numerical examples including the water exit of a cylinder, the sinking of a submerged cylinder and the complicated motion of an elliptical cylinder near free surface are provided. The obtained numerical results show good agreement with results from other sources and clearly demonstrate the effectiveness of the presented meshfree particle model in modeling free surface flows with moving objects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
We have studied the motion of bubbles and particles in the near-wall region of a turbulent boundary layer, to investigate the influence of the unsteady turbulent structure. The velocity field was computed using Proper Orthogonal Decomposition (POD), and the trajectories of bubbles and particle have been computed by integrating their equation of motion. We have used this to investigate the roles, and the relative importance, of the different forces acting on bubbles and particles, We find that the unsteady turbulent structure plays an important role in the preferential accumulation of bubbles and particles. The accumulation of bubbles depends on a rather complicated interaction between the pressure gradient and the lift force; neither is sufficient, acting on its own, to explain the strong accumulation observed when they act together.  相似文献   

14.
Finite-sized inertial spherical particles are fully-resolved with the immersed boundary projection method(IBPM) in the turbulent open-channel flow by direct numerical simulation(DNS). The accuracy of the particle surface force models is investigated in comparison with the total force obtained via the fully-resolved method. The results show that the steady-state resistance only performs well in the streamwise direction, while the fluid acceleration force, the added-mass force, and the shear-induc...  相似文献   

15.
Modelling of the agglomeration and deposition on a constricted tube collector of colloidal size particles immersed in a liquid is investigated using the discrete element method (DEM). The ability of this method to represent surface interactions allows the simulation of agglomeration and deposition at the particle scale. The numerical model adopts a mechanistic approach to represent the forces involved in colloidal suspensions by including near-wall drag retardation, surface interaction and Brownian forces. The model is implemented using the commercially available DEM package EDEM 2.3~, so that results can be repli- cated in a standard and user-friendly framework. The effects of various particle-to-collector size ratios, inlet fluid flow-rates and particle concentrations are examined and it is found that deposition efficiency is strongly dependent on the inter-relation of these parameters. Particle deposition and re-suspension mechanisms have been identified and analyzed thanks to EDEM's post processing capability. One-way coupling with computational fluid dynamics (CFD) is considered and results are compared with a two- way coupling between EDEM 2.3 and FLUENT 12.1. It is found that two-way coupling requires circa 500% more time than one-way coupling for similar results.  相似文献   

16.
In this paper a beam element that accounts for inelastic axial-flexure–shear coupling is presented. The mathematical model is derived from a three-field variational form. The finite element approximation for the beam uses shape functions for section forces that satisfy equilibrium and discontinuous section deformations along the beam. No approximation for the beam displacement field is necessary in the formulation. The coupling of the section forces is achieved through the numerical integration of an inelastic multi-axial material model over the cross-section. The proposed element is free from shear-locking. Examples confirm the accuracy and numerical robustness of the proposed element and showcase the interaction between axial force, shear, and bending moment.  相似文献   

17.
The variation of the drag (CD) and lift coefficients (CL) of two fixed solid spherical particles placed at different positions relative each other is studied. Simulations are carried out for particle Reynolds numbers of 50, 100 and 200 and the particle position is defined by the angle between the line connecting the centers of the particles and the free-stream direction (α) and the separation distance (d0) between the particles. The flow around the particles is simulated using two different methods; the Lattice Boltzmann Method (LBM), using two different computational codes, and a conventional finite difference approach, where the Volume of Solid Method (VOS) is used to represent the particles. Comparisons with available numerical and experimental data show that both methods can be used to accurately resolve the flow field around particles and calculate the forces the particles are subjected to. Independent of the Reynolds number, the largest change in drag, as compared to the single particle case, occurs for particles placed in tandem formation. Compared to a single particle, the drag reduction for the secondary particle in tandem arrangement is as high as 60%, 70% and 80% for Re = 50, 100 and 200, respectively. The development of the recirculation zone is found to have a significant influence on the drag force. Depending on the flow situation in-between the particles for various particle arrangements, attraction and repulsion forces are detected due to low and high pressure regions, respectively. The results show that the inter-particle forces are not negligible even under very dilute conditions.  相似文献   

18.
The heat dipole consists of a heat source and a heat sink. The problem of an interfacial crack of a composite containing a circular inclusion under a heat dipole is investigated by using the analytical extension technique, the generalized Liouville theo-rem, and the Muskhelishvili boundary value theory. Temperature and stress fields are formulated. The effects of the temperature field and the inhomogeneity on the interracial fracture are analyzed. As a numerical illustration, the thermal stress intensity factors of the interfacial crack are presented for various material combinations and different po-sitions of the heat dipole. The characteristics of the interfacial crack depend on the elasticity, the thermal property of the composite, and the condition of the dipole.  相似文献   

19.
The heat dipole consists of a heat source and a heat sink. The problem of an interracial crack of a composite containing a circular inclusion under a heat dipole is investigated by using the analytical extension technique, the generalized Liouville theorem, and the Muskhelishvili boundary value theory. Temperature and stress fields are formulated. The effects of the temperature field and the inhomogeneity on the interracial fracture axe analyzed. As a numerical illustration, the thermal stress intensity factors of the interfacial crack are presented for various material combinations and different positions of the heat dipole. The characteristics of the interfacial crack depend on the elasticity, the thermal property of the composite, and the condition of the dipole.  相似文献   

20.
The underlying mechanisms of controlling the self-assembly of micro-size nonmagnetic particles (NPs) in magnetic fluids are essential for the manufacture, process and exploitation of nano-magnetic material. In this study, a multi-physical numerical model, which couples a distribution function correction-based immersed boundary lattice Boltzmann method (DFCIB-LBM) for fluid–structure interaction (FSI) and a self-correcting procedure of Poisson equation solver for magnetic field, is carried out to investigate such self-assembling behaviors and mechanisms. The interactions of two neighboring micro-size NPs placed in different distance and orientation, and the self-assembling behaviors of numerous micro-size NPs under uniform magnetic field are studied in details. The results demonstrate that the self-assembling behaviors are caused by the inverse magnetic effect, which can be adjusted by varying the concentration and size of NPs, permeability ratio, and the strength of external magnetic field. On the contrary, NPs in magnetic fluid affect their surrounding magnetic field and hinder the magnetization near the NP boundary region. These findings can provide a better understanding of the bottom-up fabrication of magnetic functional materials and devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号