首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The self-similar solutions of the boundary layer for a non-Newtonian fluid in MHD were considered in [1, 2] for a power-law velocity distribution along the outer edge of the layer and constant electrical conductivity through the entire flow. However, the MHD flows of many conducting media, which are solutions or molten metals, cannot be described by the MHD equations for non-Newtonian fluids.The self-similar solutions of the boundary layer for a non-Newtonian fluid without account for interaction with the electromagnetic field were studied in [3].In the following we present the self-similar solutions for the boundary layer of pseudoplastic and dilatant fluids with account for the interaction with an electromagnetic field for the case of a power-law velocity distribution along the outer edge of the layer, when the conductivity of the fluid is constant throughout the flow and the magnetic Reynolds number is small.Izv. AN SSSR. Mekhanika Zhidkosti i Gaza, Vol. 2, No. 6, pp. 77–82, 1967The author wishes to thank S. V. Fal'kovich for his interest in this study.  相似文献   

2.
The combined influence of viscosity, Hall effect and ion slip on hydrodynamic fields and on heat transfer is investigated. The exact solutions for velocity, induced magnetic field and temperature are derived for the laminar MHD flow in a flat channel assuming a small magnetic Reynolds number, finely segmented electrodes, fully developed flow and uniform heat flux at channel walls. The internal generation of heat is not considered. The Kantorowitsch method of variational calculus is employed to approximate the complicated velocity distribution.  相似文献   

3.
An analytical solution to the famous Falkner-Skan equation for the magnetohydrodynamic (MHD) flow is obtained for a special case, namely, the sink flow with a velocity power index of −1. The solution is given in a closed form. Multiple solution branches are obtained. The effects of the magnetic parameter and the wall stretching parameter are analyzed. Interesting velocity profiles are observed with reversal flow regions even for a stationary wall. These solutions provide a rare case of the Falkner-Skan MHD flow with an analytical closed form formula. They greatly enrich the analytical solution for the celebrated Falkner-Skan equation and provide better understanding of this equation.  相似文献   

4.
The problem of magnetohydrodynamic (MHD) flow on a moving surface with the power-law velocity and special injection/blowing is investigated. A scaling group transformation is used to reduce the governing equations to a system of ordinary differen- tial equations. The skin friction coefficients of the MHD boundary layer flow are derived, and the approximate solutions of the flow characteristics are obtained with the homotopy analysis method (HAM). The approximate solutions are easily computed by use of a high order iterative procedure, and the effects of the power-law index, the magnetic parameter, and the special suction/blowing parameter on the dynamics are analyzed. The obtained results are compared with the numerical results published in the literature, verifying the reliability of the approximate solutions.  相似文献   

5.
In this study, matrix representation of the Chebyshev collocation method for partial differential equation has been represented and applied to solve magnetohydrodynamic (MHD) flow equations in a rectangular duct in the presence of transverse external oblique magnetic field. Numerical solution of velocity and induced magnetic field is obtained for steady‐state, fully developed, incompressible flow for a conducting fluid inside the duct. The Chebyshev collocation method is used with a reasonable number of collocations points, which gives accurate numerical solutions of the MHD flow problem. The results for velocity and induced magnetic field are visualized in terms of graphics for values of Hartmann number H≤1000. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The structure of one-dimensional magnetohydrodynamics (MHD) shock waves is studied using the Navier–Stokes equations for the non-ideal gas phase. The exact solutions are obtained for the flow variables (i.e. particle velocity, temperature, pressure and change-in-entropy) within the shock transition region. The equation of state for a non-ideal gas is considered as given by Landau and Lifshitz. The effects of the non-idealness parameter and coefficient of viscosity of the gas are analysed on the flow variables assuming the magnetic field having only constant axial component. The findings confirm that the thickness of MHD shock front increases with decreasing values of the non-idealness parameter.  相似文献   

7.
Direct simulation of 3-D MHD (magnetohydrodynamics) flows in liquid metal fusion blanket with flow channel insert (FCI) has been conducted. Two kinds of pressure equilibrium slot (PES) in FCI, which are used to balance the pressure difference between the inside and outside of FCI, are considered with a slot in Hartmann wall or a slot in side wall, respectively. The velocity and pressure distribution of FCI made of SiC/SiCf are numerically studied to illustrate the 3-D MHD flow effects, which clearly show that the flows in fusion blanket with FCI are typical three-dimensional issues and the assumption of 2-D fully developed flows is not the real physical problem of the MHD flows in dual-coolant liquid metal fusion blanket. The optimum opening location of PES has been analyzed based on the 3-D pressure and velocity distributions.  相似文献   

8.
We investigate a problem describing the oscillating flow of an incompressible magnetohydrodynamic (MHD) second grade fluid in a porous half space. Exact solutions for sine and cosine oscillations are developed by applying the Laplace transform method. The total obtained solution is a sum of steady and transient solutions. Particular attention is given to the effects of magnetic and porous medium parameters on the velocity. It is shown that previous results for a non-porous medium and hydrodynamic fluid are the limiting cases of the present problem. The results for velocity are plotted and discussed carefully.  相似文献   

9.
This paper studies stratified magnetohydrodynamic(MHD) flow of tangent hyperbolic nanofluid past an inclined exponentially stretching surface. The flow is subjected to velocity, thermal, and solutal boundary conditions. The partial differential systems are reduced to ordinary differential systems using appropriate transformations.The reduced systems are solved for convergent series solutions. The velocity, temperature,and concentration fields are discussed for different physical parameters. The results indicate that the temperature and the thermal boundary layer thickness increase noticeably for large values of Brownian motion and thermophoresis effects. It is also observed that the buoyancy parameter strengthens the velocity field, showing a decreasing behavior of temperature and nanoparticle volume fraction profiles.  相似文献   

10.
毛洁  王彦利  王浩 《力学学报》2018,50(6):1387-1395
热核聚变反应堆液态金属包层应用中的一个重要问题是液态金属在导电管中流动和强磁场相互作用产生的额外的磁流体动力学压降.这种磁流体动力学压降远远大于普通水力学压降.美国阿贡国家实验室ALEX研究小组,对非均匀磁场下导电管中液态金属磁流体动力学效应进行了实验研究,其实验结果成为液态金属包层数值验证的标准模型之一.液态金属包层在应用中会受到不同方向的磁场作用,本文以ALEX的非均匀磁场下导电方管中液态金属管流实验中的一组参数为基础,保持哈特曼数、雷诺数和壁面电导率不变,采用三维直接数值模拟的方法,研究了外加磁场与侧壁之间的倾角对导电方管内液态金属流动的速度、电流和压降分布的影响.研究结果表明:沿流向相同横截面上的速度、电流以及压力分布均随磁场的倾斜而同向旋转.倾斜磁场均匀段,横截面上的高速区位于平行磁场方向的哈特曼层和平行层交叉位置,压力梯度随磁场倾角的增大先增大后减小.倾斜磁场递减段,在三维磁流体动力学效应作用下,横截面上的高速射流位置向垂直磁场方向偏移.磁场递减段的三维磁流体动力学压降随磁场倾角的增大而增大.随磁场倾斜,截面上的射流峰值逐渐减小,二次流增强,引发层流向湍流的转捩.   相似文献   

11.
The present article investigates the dual nature of the solution of the magneto- hydrodynamic (MHD) stagnation-point flow of a Prandtl fluid model towards a shrinking surface. The self-similar nonlinear ordinary differential equations are solved numerically by the shooting: method. It is found that the dual solutions of the flow exist for cer- tain values of tile velocity ratio parameter. The special case of the first branch solutions (the classical Newtonian fluid model) is compared with the present numerical results of stretching flow. The results are found to be in good agreement. It is also shown that the boundary layer thickness for the second solution is thicker than that for the first solution.  相似文献   

12.
This study investigates the rotating magnetohydrodynamic (MHD) flow of a third-grade fluid in a porous space. Modified Darcy's law has been utilized for the flow modeling. The Hall effects are taken into consideration. The basic equations governing the flow are reduced to a highly nonlinear ordinary differential equation. This equation has been solved analytically by employing the homotopy analysis method (HAM). The effects of the various interesting parameters on the velocity distribution have been discussed.  相似文献   

13.
This work is concerned with applying the fractional calculus approach to the magnetohydrodynamic (MHD) pipe flow of a fractional generalized Burgers’ fluid in a porous space by using modified Darcy’s relationship. The fluid is electrically conducting in the presence of a constant applied magnetic field in the transverse direction. Exact solution for the velocity distribution is developed with the help of Fourier transform for fractional calculus. The solutions for a Navier–Stokes, second grade, Maxwell, Oldroyd-B and Burgers’ fluids appear as the limiting cases of the present analysis.  相似文献   

14.
An unsteady magnetohydrodynamic (MHD) boundary layer flow over a shrinking permeable sheet embedded in a moving viscous electrically conducting fluid is investigated both analytically and numerically. The velocity slip at the solid surface is taken into account in the boundary conditions. A novel analytical method named DTMBF is proposed and used to get the approximate analytical solutions to the nonlinear governing equation along with the boundary conditions at infinity. All analytical results are compared with those obtained by a numerical method. The comparison shows good agreement, which validates the accuracy of the DTM-BF method. Moreover, the existence ranges of the dual solutions and the unique solution for various parameters are obtained. The effects of the velocity slip parameter, the unsteadiness parameter, the magnetic parameter, the suction/injection parameter, and the velocity ratio parameter on the skin friction, the unique velocity, and the dual velocity profiles are explored, respectively.  相似文献   

15.
In this paper, the basic equations of two-phase liquid metal flow in a magnetic field are derived, and specifically, two-phase liquid metal MHD flow in a rectangular channel is studied, and the expressions of velocity distribution of liquid and gas phases and the ratioK 0 of the pressure drop in two-phase MHD flow to that in single-phase are derived. Results of calculation show that the ratioK 0 is smaller than unity and decreases with increasing void fraction and Hartmann number because the effective electrical conductivity in the two-phase case decreases. The Project is supported by the National Natural Science Foundation of China.  相似文献   

16.
This study is concerned with the magnetohydrodynamic (MHD) rotating boundary layer flow of a viscous fluid caused by the shrinking surface. Homotopy analysis method (HAM) is employed for the analytic solution. The similarity transformations have been used for reducing the partial differential equations into a system of two coupled ordinary differential equations. The series solution of the obtained system is developed and convergence of the results are explicitly given. The effects of the parameters M, s and λ on the velocity fields are presented graphically and discussed. It is worth mentioning here that for the shrinking surface the stable and convergent solutions are possible only for MHD flows.  相似文献   

17.
Exact analytical solutions for magnetohydrodynamic (MHD) flows of an incompressible second grade fluid in a porous medium are developed. The modified Darcy's law for second grade fluid has been used in the flow modelling. The Hall effect is taken into account. The exact solutions for the unsteady flow induced by the time-dependent motion of a plane wall between two side walls perpendicular to the plane has been constructed by means of Fourier sine transforms. The similar solutions for a Newtonian fluid, performing the same motion, appear as limiting cases of the solutions obtained here. The influence of various parameters of interest on the velocity and shear stress at the bottom wall has been shown and discussed through several graphs. A comparison between a Newtonian and a second grade fluids is also made.  相似文献   

18.
This paper generalizes the analysis of four magnetohydrodynamic (MHD) flow problems of an Oldroyd-B fluid discussed by Asghar et al. [Int. J. Non-linear Mech. 40, 589–601 (2005)] into three directions: (i) to discuss the problems in a porous medium using modified Darcy’s law (ii) to see the influence of Hall current (iii) to determine the effect of rheological parameter of Burgers’ fluid. Analytical solutions of velocity distribution valid at large and small times are given in each problem. Comparison has been provided for Oldroyd-B and Burgers’ fluids through graphs. The physical interpretation is also included.  相似文献   

19.
The effects of the second-order velocity slip and temperature jump boundary conditions on the magnetohydrodynamic (MHD) flow and heat transfer in the presence of nanoparticle fractions are investigated. In the modeling of the water-based nanofluids containing Cu and Al2O3, the effects of the Brownian motion, thermophoresis, and thermal radiation are considered. The governing boundary layer equations are transformed into a system of nonlinear differential equations, and the analytical approximations of the solutions are derived by the homotopy analysis method (HAM). The reliability and efficiency of the HAM solutions are verified by the residual errors and the numerical results in the literature. Moreover, the effects of the physical factors on the flow and heat transfer are discussed graphically.  相似文献   

20.
This study looks at the magnetohydrodynamic (MHD) flow of a generalized Burgers’ fluid between two heated disks rotating about noncoaxial axes normal to the disks. The steady flow and heat transfer analysis is investigated by providing exact analytic solutions. The effect of Hall current is taken into consideration. Calculations are carried out for velocity, temperature, force, and torque exerted by the fluid on one of the disks. The physical interpretation for the emerging parameters is discussed with the help of graphs. The results are compared with those available in the existing literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号