首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The reaction of AgClO(4) and NH(3) in acetone gave [Ag(NH=CMe(2))(2)]ClO(4) (1). The reactions of 1 with [RhCl(diolefin)](2) or [RhCl(CO)(2)](2) (2:1) gave the bis(acetimine) complexes [Rh(diolefin)(NH=CMe(2))(2)]ClO(4) [diolefin = 1,5 cyclooctadiene = cod (2), norbornadiene = nbd (3)] or [Rh(CO)(2)(NH=CMe(2))(2)]ClO(4) (4), respectively. Mono(acetimine) complexes [Rh(diolefin)(NH=CMe(2))(PPh(3))]ClO(4) [diolefin = cod (5), nbd (6)] or [RhCl(diolefin)(NH=CMe(2))] [diolefin = cod (7), nbd (8)] were obtained by reacting 2 or 3 with PPh(3) (1:1) or with Me(4)NCl (1:1.1), respectively. The reaction of 4 with PR(3) (R = Ph, To, molar ratio 1:2) led to [Rh(CO)(NH=CMe(2))(PR(3))(2)]ClO(4) [R = Ph (9), C(6)H(4)Me-4 = To (10)] while cis-[Rh(CO)(NH=CMe(2))(2)(PPh(3))]ClO(4) (11) was isolated from the reaction of 1 with [RhCl(CO)(PPh(3))](2) (1:1). The crystal structures of 5 and [Ag[H(2)NC(Me)(2)CH(2)C(O)Me](PTo(3))]ClO(4) (A), a product obtained in a reaction between NH(3), AgClO(4), and PTo(3), have been determined.  相似文献   

2.
[Rh(Cp)Cl(mu-Cl)](2) (Cp = pentamethylcyclopentadienyl) reacts (i) with [Au(NH=CMe(2))(PPh(3))]ClO(4) (1:2) to give [Rh(Cp)(mu-Cl)(NH=CMe(2))](2)(ClO(4))(2) (1), which in turn reacts with PPh(3) (1:2) to give [Rh(Cp)Cl(NH=CMe(2))(PPh(3))]ClO(4) (2), and (ii) with [Ag(NH=CMe(2))(2)]ClO(4) (1:2 or 1:4) to give [Rh(Cp)Cl(NH=CMe(2))(2)]ClO(4) (3) or [Rh(Cp)(NH=CMe(2))(3)](ClO(4))(2).H(2)O (4.H(2)O), respectively. Complex 3 reacts (i) with XyNC (1:1, Xy = 2,6-dimethylphenyl) to give [Rh(Cp)Cl(NH=CMe(2))(CNXy)]ClO(4) (5), (ii) with Tl(acac) (1:1, acacH = acetylacetone) or with [Au(acac)(PPh(3))] (1:1) to give [Rh(Cp)(acac)(NH=CMe(2))]ClO(4) (6), (iii) with [Ag(NH=CMe(2))(2)]ClO(4) (1:1) to give 4, and (iv) with (PPN)Cl (1:1, PPN = Ph(3)P=N=PPh(3)) to give [Rh(Cp)Cl(imam)]Cl (7.Cl), which contains the imam ligand (N,N-NH=C(Me)CH(2)C(Me)(2)NH(2) = 4-imino-2-methylpentan-2-amino) that results from the intramolecular aldol-type condensation of the two acetimino ligands. The homologous perchlorate salt (7.ClO(4)) can be prepared from 7.Cl and AgClO(4) (1:1), by treating 3 with a catalytic amount of Ph(2)C=NH, in an atmosphere of CO, or by reacting 4with (PPN)Cl (1:1). The reactions of 7.ClO(4) with AgClO(4) and PTo(3) (1:1:1, To = C(6)H(4)Me-4) or XyNC (1:1:1) give [Rh(Cp)(imam)(PTo(3))](ClO(4))(2).H(2)O (8) or [Rh(Cp)(imam)(CNXy)](ClO(4))(2) (9), respectively. The crystal structures of 3 and 7.Cl have been determined.  相似文献   

3.
The synthesis of new ligand systems based on the bipyridine unit for bi- and trimetallic complexes, including a rare example of a chiral bimetallic complex, is presented. Ligands BBPX (bis-bipyridine-xylene, 3) and TBPBX (tris-bipyridine-bis-xylene, 4) were prepared in one step by reacting alpha,alpha'-dibromo-o-xylene (2) with 2 equiv of the monolithiated derivative of 4,4'-dimethyl-2,2'-bipyridine. Dilithium (S)-binaphtholate (5) reacted with 2 equiv of 4-bromomethyl-4'-methyl-2,2'-bipyridine (6), affording ligand (S)-BBPBINAP (bis-bipyridine-binaphtholate, 7). These ligands reacted cleanly with 1, 1.5, and 1 equiv of the rhodium dimer [Rh(2)Cl(2)(HD)(2)] (HD = 1,5-hexadiene), respectively. Chloride abstraction led to the isolation of the cationic complexes BBPX[Rh(HD)BF(4)](2) (8), TBPBX[Rh(HD)BF(4)](3) (10), and (S)-BBPBINAP[Rh(HD)BF(4)](2) (12). When BBPX (3), TBPBX (4), and (S)-BBPBINAP (7) were added to 2, 3, and 2 equiv of [Rh(NBD)(2)]BF(4) or [Rh(NBD)(CH(3)CN)(2)]BF(4) (NBD = norbornadiene), respectively, clean formation of BBPX[Rh(NBD)BF(4)](2) (9), TBPBX[Rh(NBD)BF(4)](3) (11), and (S)-BBPBINAP[Rh(NBD)BF(4)](2) (13) was observed. The neutral iridium complex (S)-BBPBINAP[IrCl(COD)](2) (14) was obtained by reaction of (S)-BBPBINAP (7) with 1 equiv of [Ir(2)Cl(2)(COD)(2)] (COD = cyclooctadiene). The complexes were fully characterized including X-ray structural studies of 8, 9, and 13, and preliminary studies on their catalytic activity were performed.  相似文献   

4.
2-Phosphanylethylcyclopentadienyl lithium compounds, Li[C(5)R'(4)(CH(2))(2)PR(2)] (R = Et, R' = H or Me, R = Ph, R' = Me), have been prepared from the reaction of spirohydrocarbons C(5)R'(4)(C(2)H(4)) with LiPR(2). C(5)Et(4)HSiMe(2)CH(2)PMe(2), was prepared from reaction of Li[C(5)Et(4)] with Me(2)SiCl(2) followed by Me(2)PCH(2)Li. The lithium salts were reacted with [RhCl(CO)(2)](2), [IrCl(CO)(3)] or [Co(2)(CO)(8)] to give [M(C(5)R'(4)(CH(2))(2)PR(2))(CO)] (M = Rh, R = Et, R' = H or Me, R = Ph, R' = Me; M = Ir or Co, R = Et, R' = Me), which have been fully characterised, in many cases crystallographically as monomers with coordination of the phosphorus atom and the cyclopentadienyl ring. The values of nu(CO) for these complexes are usually lower than those for the analogous complexes without the bridge between the cyclopentadienyl ring and the phosphine, the exception being [Rh(Cp'(CH(2))(2)PEt(2))(CO)] (Cp' = C(5)Me(4)), the most electron rich of the complexes. [Rh(C(5)Et(4)SiMe(2)CH(2)PMe(2))(CO)] may be a dimer. [Co(2)(CO)(8)] reacts with C(5)H(5)(CH(2))(2)PEt(2) or C(5)Et(4)HSiMe(2)CH(2)PMe(2) (L) to give binuclear complexes of the form [Co(2)(CO)(6)L(2)] with almost linear PCoCoP skeletons. [Rh(Cp'(CH(2))(2)PEt(2))(CO)] and [Rh(Cp'(CH(2))(2)PPh(2))(CO)] are active for methanol carbonylation at 150 degrees C and 27 bar CO, with the rate using [Rh(Cp'(CH(2))(2)PPh(2))(CO)] (0.81 mol dm(-3) h(-1)) being higher than that for [RhI(2)(CO)(2)](-) (0.64 mol dm(-3) h(-1)). The most electron rich complex, [Rh(Cp'(CH(2))(2)PEt(2))(CO)] (0.38 mol dm(-3) h(-1)) gave a comparable rate to [Cp*Rh(PEt(3))(CO)] (0.30 mol dm(-3) h(-1)), which was unstable towards oxidation of the phosphine. [Rh(Cp'(CH(2))(2)PEt(2))I(2)], which is inactive for methanol carbonylation, was isolated after the methanol carbonylation reaction using [Rh(Cp'(CH(2))(2)PEt(2))(CO)]. Neither of [M(Cp'(CH(2))(2)PEt(2))(CO)] (M = Co or Ir) was active for methanol carbonylation under these conditions, nor under many other conditions investigated, except that [Ir(Cp'(CH(2))(2)PEt(2))(CO)] showed some activity at higher temperature (190 degrees C), probably as a result of degradation to [IrI(2)(CO)(2)](-). [M(Cp'(CH(2))(2)PEt(2))(CO)] react with MeI to give [M(Cp'(CH(2))(2)PEt(2))(C(O)Me)I] (M = Co or Rh) or [Ir(Cp'(CH(2))(2)PEt(2))Me(CO)]I. The rates of oxidative addition of MeI to [Rh(C(5)H(4)(CH(2))(2)PEt(2))(CO)] and [Rh(Cp'(CH(2))(2)PPh(2))(CO)] are 62 and 1770 times faster than to [Cp*Rh(CO)(2)]. Methyl migration is slower, however. High pressure NMR studies show that [Co(Cp'(CH(2))(2)PEt(2))(CO)] and [Cp*Rh(PEt(3))(CO)] are unstable towards phosphine oxidation and/or quaternisation under methanol carbonylation conditions, but that [Rh(Cp'(CH(2))(2)PEt(2))(CO)] does not exhibit phosphine degradation, eventually producing inactive [Rh(Cp'(CH(2))(2)PEt(2))I(2)] at least under conditions of poor gas mixing. The observation of [Rh(Cp'(CH(2))(2)PEt(2))(C(O)Me)I] under methanol carbonylation conditions suggests that the rhodium centre has become so electron rich that reductive elimination of ethanoyl iodide has become rate determining for methanol carbonylation. In addition to the high electron density at rhodium.  相似文献   

5.
MeNH(2) reacts with silver salts AgX (2:1) to give [Ag(NH(2)Me)(2)]X [X = TfO = CF(3)SO(3) (1.TfO) and ClO(4) (1.ClO(4))]. Neutral mono(amino) Rh(III) complexes [Rh(Cp*)Cl(2)(NH(2)R)] [R = Me (2a), To = C(6)H(4)Me-4 (2b)] have been prepared by reacting [Rh(Cp*)Cl(mu-Cl)](2) with RNH(2) (1:2). The following cationic methyl amino complexes have also been prepared: [Rh(Cp*)Cl(NH(2)Me)(PPh(3))]TfO (3.TfO), from [Rh(Cp*)Cl(2)(PPh(3))] and 1.TfO (1:1); [Rh(Cp*)Cl(NH(2)R)2]X, where R = Me, X = Cl, (4a.Cl), from [Rh(Cp*)Cl(mu-Cl)]2 and MeNH2 (1:4), or R = Me, X = ClO4 (4a.ClO4), from 4a.Cl and NaClO4 (1:4.8), or R = To, X = TfO (4b.TfO), from [Rh(Cp*)Cl(mu-Cl)](2), ToNH(2) and TlTfO (1:4:2); [Rh(Cp*)(NH(2)Me)(tBubpy)](TfO)(2) (tBubpy = 4,4'-di-tert-butyl-2,2'-bipyridine, 5.TfO), from 2a, TlTfO and tBubpy (1:2:1); [Rh(Cp*)(NH(2)Me)(3)](TfO)2 (6.TfO) from [Rh(Cp*)Cl(mu-Cl)](2) and 1.TfO (1:4). 2-6 constitute the first family of methyl amino complexes of rhodium. 1 and 4a.ClO(4) react with acetone to give, respectively, the methyl imino complexes [Ag{N(Me)=CMe(2)}()]X [X = TfO (7.TfO), ClO(4) (7.ClO(4))], and [Rh(Cp*)Cl(Me-imam)]ClO(4) [8.ClO(4), Me-imam = N,N'-N(Me)=C(Me)CH(2)C(Me)(2)NHMe]. 7.X (X = TfO, ClO(4)) are new members of the small family of methyl acetimino complexes of any metal whereas 8.ClO4 results after a double acetone condensation to give the corresponding bis(methyl acetimino) complex and an aldol-like condensation of the two imino ligands. The acetimino complex [Ag(NH=CMe(2))(2)]ClO(4) reacts with [Rh(Cp*)Cl(imam)]ClO(4) [1:1, imam = N,N'-NH=C(Me)CH(2)C(Me)(2)NH(2)] to give [Rh(Cp*)(imam)(NH=CMe(2))](ClO(4))(2) (9a.ClO(4)). 8.ClO(4) reacts with AgClO(4) (1:1) in MeCN to give [Rh(Cp*)(Me-imam)(NCMe)](ClO(4))2 (9b.ClO(4)), which in turn reacts with XyNC (Xy = C(6)H(3)Me(2)-2,6) or with MeNH(2) (1:1) to give [Rh(Cp*)(Me-imam)L](ClO(4))(2) [L = XyNC (9c.ClO(4)), MeNH(2) (9d.ClO(4))]. 6.TfO reacts with acetophenone to give [Rh(Cp*){C,N-C(6)H(4)C(Me)=N(Me)-2}(NH(2)Me)]TfO (10a.TfO), the first complex resulting from such a condensation and cyclometalation reaction. In turn, 10a.TfO reacts with isocyanides RNC (1:1) at room temperature to give [Rh(Cp*){C,N-C(6)H(4)C(Me)=NMe-2}(CNR)]TfO [R = tBu (10b.TfO), Xy (10c.TfO)], or 1:12 at 60 degrees C to give [Rh(Cp*){C,N-C(=NXy)C(6)H(4)C(Me)=N(Me)-2}(CNXy)]TfO (11.TfO). The crystal structures of 9a.ClO(4).acetone-d6, 9c.ClO(4), and 10a.TfO have been determined.  相似文献   

6.
The reactions of the hydroxo complexes [M(2)R(4)(mu-OH)(2)](2)(-) (M = Pd, R = C(6)F(5), C(6)Cl(5); M = Pt, R = C(6)F(5)), [[PdR(PPh(3))(mu-OH)](2)] (R = C(6)F(5), C(6)Cl(5)), and [[Pt(C(6)F(5))(2)](2)(mu-OH)(mu-pz)](2-) (pz = pyrazolate) with H(2)S yield the corresponding hydrosulfido complexes [M(2)(C(6)F(5))(4)(mu-SH)(2)](2-), [[PdR(PPh(3))(mu-SH)](2)], and [[Pt(C(6)F(5))(2)](2)(mu-SH)(mu-pz)](2-), respectively. The monomeric hydrosulfido complexes [M(C(6)F(5))(2)(SH)(PPh(3))](-) (M = Pd, Pt) have been prepared by reactions of the corresponding binuclear hydrosulfido complexes [M(2)(C(6)F(5))(4)(mu-SH)(2)](2-) with PPh(3) in the molar ratio 1:2, and they can be used as metalloligands toward Ag(PPh(3))(+) to form the heterodinuclear complex [(C(6)F(5))(2)(PPh(3))[S(H)AgPPh(3)]], and toward Au(PPh(3))(+) yielding the heterotrinuclear complexes [M(C(6)F(5))(2)(PPh(3))[S(AuPPh(3))(2)]]. The crystal structures of [NBu(4)](2)[[Pt(C(6)F(5))(2)(mu-SH)](2)], [Pt(C(6)F(5))(2)(PPh(3))[S(H)AgPPh(3)]], and [Pt(C(6)F(5))(2)(PPh(3))[S(AuPPh(3))(2)]] have been established by X-ray diffraction and show no short metal-metal interactions between the metallic centers.  相似文献   

7.
[Pt(CSe3)(PR3)2] (PR3= PMe3, PMe2Ph, PPh3, P(p-tol)3, 1/2 dppp, 1/2 dppf) were all obtained by the reaction of the appropriate metal halide containing complex with carbon diselenide in liquid ammonia. Similar reaction with [Pt(Cl)2(dppe)] gave a mixture of triselenocarbonate and perselenocarbonate complexes. [{Pt(mu-CSe3)(PEt3)}4] was formed when the analogous procedure was carried out using [Pt(Cl)2(PEt3)2]. Further reaction of [Pt(CSe3)(PMe2Ph)2] with [M(CO)6] (M = Cr, W, Mo) yielded bimetallic species of the type [Pt(PMe2Ph)2(CSe3)M(CO)5] (M = Cr, W, Mo). The dimeric triselenocarbonate complexes [M{(CSe3)(eta5-C5Me5)}2] (M = Rh, Ir) and [{M(CSe3)(eta6-p-MeC6H4(i)Pr)}2] (M = Ru, Os) have been synthesised from the appropriate transition metal dimer starting material. The triselenocarbonate ligand is Se,Se' bidentate in the monomeric complexes. In the tetrameric structure the exocyclic selenium atoms link the four platinum centres together.  相似文献   

8.
Reactions of Fe[N(SiMe(3))(2)](2) with 1 and 2 equiv of Ph(3)SiSH in hexane afforded dinuclear silanethiolato complexes, [Fe(N(SiMe(3))(2))(mu-SSiPh(3))](2) (1) and [Fe(SSiPh(3))(mu-SSiPh(3))](2) (2), respectively. Various Lewis bases were readily added to 2, generating mononuclear adducts, Fe(SSiPh(3))(2)(L)(2) [L = CH(3)CN (3a), 4-(t)BuC(5)H(4)N (3b), PEt(3) (3c), (LL) = tmeda (3d)]. From the analogous reactions of M[N(SiMe(3))(2)](2) (M = Mn, Co) and [Ni(NPh(2))(2)](2) with Ph(3)SiSH in the presence of TMEDA, the corresponding silanethiolato complexes, M(SSiPh(3))(2)(tmeda) [M = Mn (4), Co (5), Ni (6)], were isolated. Treatment of 3a with (PPh(4))(2)[MoS(4)] or (NEt(4))(2)[FeCl(4)] resulted in formation of a linear trinuclear Fe-Mo-Fe cluster (PPh(4))(2)[MoS(4)(Fe(SSiPh(3))(2))(2)] (7) or a dinuclear complex (NEt(4))(2)[Fe(2)(SSiPh(3))(2)Cl(4)] (8). On the other hand, the reaction of 3a with [Cu(CH(3)CN)(4)](PF(6)) gave a cyclic tetranuclear copper cluster Cu(4)(SSiPh(3))(4) (9), where silanethiolato ligands were transferred from iron to copper. Silicon-sulfur bond cleavage was found to occur when the cobalt complex 5 was treated with (NBu(4))F in THF, and a cobalt-sulfido cluster Co(6)(mu(3)-S)(8)(PPh(3))(6) (10) was isolated upon addition of PPh(3) to the reaction system. The silanethiolato complexes reported here are expected to serve as convenient precursors for sulfido cluster synthesis.  相似文献   

9.
[RhCl(PR3)3] (R = Ph, Et) reacts with the potassium salt of 4-mercaptobenzoic acid to give a mixture of the monomeric and dimeric complexes, [Rh(SC6H4COOH)(PR3)3] and [{Rh(-SC6H4COOH)(PR3)2}2], respectively. With the labile PPh3 coligand, the dimer is the major product, while for the electron-richer coligand PEt3, the equilibrium is easily shifted to the monomer by the addition of excess PEt3. Phosphane dissociation and dimerization could be prevented by using the chelating coligand PPh(C2H4PPh2)2. [{Rh(-SC6H4COOH)(PPh3)2}2] (2b), [Rh(SC6H4COOH)(PEt3)3] (3a), and [Rh(SC6H4COOH){PPh(C2H4PPh2)2}] (4) were fully characterized by nuclear magnetic resonance and infrared spectroscopy, mass spectrometry, and elemental analysis. The molecular structures of 2b and 4 were determined by X-ray structure analysis. In solution, the lability of the phosphane ligands leads to the decomposition of 2b. One of the decomposition products, namely, the mixed-valent complex [{RhIRhIII(-SC6H4COO)(-SC6H4COOH)(SC6H4COOH)(PPh3)3}2] (5), was characterized by X-ray structural analysis. The dinuclear rhodium(III) complex [{Rh(-SC6H4COO)(SC6H4COOH)(PEt3)2}2] (6) was shown to be a byproduct in the synthesis of 3a, and this demonstrates the reactivity of the rhodium(I) complexes toward oxidative addition. The structurally characterized complexes 2b, 4, 5, and 6 show hydrogen bonding of the free carboxyl groups.  相似文献   

10.
Starting from the binuclear complex [RhCl(NBD)]2 (NBD = 2,5-norbornadiene) in the presence of the phosphines L = PMe3, PMe2Ph, PMePh2, PEt3, PEt2Ph, PEtPh2, or P(n-butyl)3, various mononuclear dihydrides of the type Rh(H)2CIL3, i.e., those of the homogeneous hydrogenation catalysts RhCIL3, have been obtained upon addition of parahydrogen, and their 1H NMR spectra have been investigated using parahydrogen-induced polarization (PHIP). Furthermore, the two binuclear complexes (H)(Cl)Rh(PMe3)2(mu-Cl)(mu-H)Rh(PMe3) and (H)(Cl)Rh(PMe2Ph)2(mu-Cl)(mu-H)Rh(PMe2Ph) have been detected and characterized by means of this in situ NMR method. Analogous complexes with trifluoroacetate instead of chloride, i.e., Rh(H)2(CF3COO)L3, have been generated in situ starting from Rh(NBD)(acac) in the presence of trifluoroacetic acid in combination with the phosphines L = PPh3, PEt2Ph, PEt3, and P(n-butyl)3, and their 1H NMR parameters have been determined.  相似文献   

11.
Cyclodiphosphazanes having hemilabile ponytails such as cis-[(t)()BuNP(OC(6)H(4)OMe-o)](2) (2), cis-[(t)()BuNP(OCH(2)CH(2)OMe)](2) (3), cis-[(t)BuNP(OCH(2)CH(2)SMe)](2) (4), and cis-[(t)BuNP(OCH(2)CH(2)NMe(2))](2) (5) were synthesized by reacting cis-[(t)()BuNPCl](2) (1) with corresponding nucleophiles. The reaction of 2 with [M(COD)Cl(2)] afforded cis-[MCl(2)(2)(2)] derivatives (M = Pd (6), Pt (7)), whereas, with [Pd(NCPh)(2)Cl(2)], trans-[MCl(2)(2)(2)] (8) was obtained. The reaction of 2 with [Pd(PEt(3))Cl(2)](2), [{Ru(eta(6)-p-cymene)Cl(2)](2), and [M(COD)Cl](2) (M = Rh, Ir) afforded mononuclear complexes of Pd(II) (9), Ru(II) (11), Rh(I) (12), and Ir(I) (13) irrespective of the stoichiometry of the reactants and the reaction condition. In the above complexes the cyclodiphosphazane acts as a monodentate ligand. The reaction of 2 with [PdCl(eta(3)-C(3)H(5))](2) afforded binuclear complex [(PdCl(eta(3)-C(3)H(5)))(2){((t)BuNP(OC(6)H(4)OMe-o))(2)-kappaP}] (10). The reaction of ligand 3 with [Rh(CO)(2)Cl](2) in 1:1 ratio in CH(3)CN under reflux condition afforded tetranuclear rhodium(I) metallamacrocycle (14), whereas the ligands 4 and 5 afforded bischelated binuclear complexes 15 and 16, respectively. The crystal structures of 8, 9, 12, 14, and 16 are reported.  相似文献   

12.
A series of mono- and binuclear rhodium(I) complexes bearing ortho-phosphinoanilido and ortho-phosphinoaniline ligands has been synthesized. Reactions of the protic monophosphinoanilines, Ph(2)PAr or PhPAr(2) (Ar = o-C(6)H(4)NHMe), with 0.5 equiv of [Rh(μ-OMe)(COD)](2) result in the formation of the neutral amido complexes, [Rh(COD)(P,N-Ph(2)PAr(-))] or [Rh(COD)(P,N-PhP(Ar(-))Ar)] (Ar(-) = o-C(6)H(4)NMe(-)), respectively, through stoichiometrically controlled deprotonation of an amine by the internal methoxide ion. Similarly, the binuclear complex, [Rh(2)(COD)(2)(μ-P,N,P',N'-mapm(2-))] (mapm(2-) = Ar(Ar(-))PCH(2)P(Ar(-))Ar), can be prepared by reaction of the protic diphosphinoaniline, mapm (Ar(2)PCH(2)PAr(2)), with 1 equiv of [Rh(μ-OMe)(COD)](2). An analogous series of hemilabile phosphine-amine compounds can be generated by reactions of monophosphinoanilines, Ph(2)PAr' or PhPAr'(2) (Ar' = o-C(6)H(4)NMe(2)), with 1 equiv of [Rh(NBD)(2)][BF(4)] to generate [Rh(NBD)(P,N-Ph(2)PAr')][BF(4)] or [Rh(NBD)(P,N-PhPAr'(2))][BF(4)], respectively, or by reactions of diphosphinoanilines, mapm or dmapm (Ar'(2)PCH(2)PAr'(2)), with 2 equiv of the rhodium precursor to generate [Rh(2)(NBD)(2)(μ-P,N,P',N'-mapm)][BF(4)](2) or [Rh(2)(NBD)(2)(μ-P,N,P',N'-dmapm)][BF(4)](2), respectively. Displacement of the diolefin from [Rh(COD)(P,N-Ph(2)PAr(-))] by 1,2-bis(diphenylphosphino)ethane (dppe) yields [Rh(P,P'-dppe)(P,N-Ph(2)PAr(-))] which, while unreactive to H(2), reacts readily and irreversibly with oxygen to form the peroxo complex, [RhO(2)(P,P'-dppe)(P,N-Ph(2)PAr(-))], and with iodomethane to yield [RhI(CH(3))(P,P'-dppe)(P,N-Ph(2)PAr(-))]. Hemilabile phosphine-amine compounds can also be prepared by reactions of [Rh(P,P'-dppe)(P,N-Ph(2)PAr(-))] with Me(3)OBF(4) or HBF(4)·Et(2)O, resulting in (thermodynamic) additions at nitrogen to form [Rh(P,P'-dppe)(P,N-Ph(2)PAr')][BF(4)] or [Rh(P,P'-dppe)(P,N-Ph(2)PAr)][BF(4)], respectively. The nonlabile phosphine-amido and hemilabile phosphine-amine complexes were tested as catalysts for the silylation of styrene. The amido species do not require the use of solvents in reaction media, can be easily removed from product mixtures by protonation, and appear to be more active than their hemilabile, cationic congeners. Reactions catalyzed by either amido or amine complexes favor dehydrogenative silylation in the presence of excess olefin, showing modest selectivities for a single vinylsilane product. The binuclear complexes, which were prepared in an effort to explore possible catalytic enhancements of reactivity due to metal-metal cooperativity, are in fact somewhat less active than mononuclear species, discounting this possibility.  相似文献   

13.
The reaction of [AuCl(PR(3))] with [1,2-(Ph(2)P)(2)-1,2-C(2)B(10)H(10)] in refluxing ethanol proceeds with partial degradation (removal of a boron atom adjacent to carbon) of the closo species to give [Au{(PPh(2))(2)C(2)B(9)H(10)}(PR(3))] [PR(3) = PPh(3) (1), PPh(2)Me (2), PPh(2)(4-Me-C(6)H(4)) (3), P(4-Me-C(6)H(4))(3) (4), P(4-OMe-C(6)H(4))(3) (5)]. Similarly, the treatment of [Au(2)Cl(2)(&mgr;-P-P)] with [1,2-(Ph(2)P)(2)-1,2-C(2)B(10)H(10)] under the same conditions leads to the complexes [Au(2){(PPh(2))(2)C(2)B(9)H(10)}(2)(&mgr;-P-P)] [P-P = dppe = 1,2-bis(diphenylphosphino)ethane (6), dppp = 1,3-bis(diphenylphosphino)propane (7)], where the dppe or dppp ligands bridge two gold nido-diphosphine units. The reaction of 1 with NaH leads to removal of one proton, and further reaction with [Au(PPh(3))(tht)]ClO(4) gives the novel metallocarborane compound [Au(2){(PPh(2))(2)C(2)B(9)H(9)}(PPh(3))(2)] (8). The structure of complexes 1 and 7 have been established by X-ray diffraction. [Au{(PPh(2))(2)C(2)B(9)H(10)}(PPh(3))] (1) (dichloromethane solvate) crystallizes in the monoclinic space group P2(1)/c, with a = 17.326(3) ?, b = 20.688(3) ?, c = 13.442(2) ?, beta = 104.710(12) degrees, Z = 4, and T = -100 degrees C. [Au(2){(PPh(2))(2)C(2)B(9)H(10)}(2)(&mgr;-dppp)] (7) (acetone solvate) is triclinic, space group P&onemacr;, a = 13.432(3) ?, b = 18.888(3) ?, c = 20.021(3) ?, alpha = 78.56(2) degrees, beta = 72.02(2) degrees, gamma = 73.31(2) degrees, Z = 2, and T = -100 degrees C. In both complexes the gold atom exhibits trigonal planar geometry with the 7,8-bis(diphenylphosphino)-7,8-dicarba-nido-undecaborate(1-) acting as a chelating ligand.  相似文献   

14.
The generation of heterobimetallic complexes with two or three bridging sulfido ligands from mononuclear tris(sulfido) complex of tungsten [Et(4)N][(Me(2)Tp)WS(3)] (1; Me(2)Tp = hydridotris(3,5-dimethylpyrazol-1-yl)borate) and organometallic precursors is reported. Treatment of 1 with stoichiometric amounts of metal complexes such as [M(PPh(3))(4)] (M = Pt, Pd), [(PtMe(3))(4)(micro(3)-I)(4)], [M(cod)(PPh(3))(2)][PF(6)] (M = Ir, Rh; cod = 1,5-cyclooctadiene), [Rh(cod)(dppe)][PF(6)] (dppe = Ph(2)PCH(2)CH(2)PPh(2)), [CpIr(MeCN)(3)][PF(6)](2) (Cp = eta(5)-C(5)Me(5)), [CpRu(MeCN)(3)][PF(6)], and [M(CO)(3)(MeCN)(3)] (M = Mo, W) in MeCN or MeCN-THF at room temperature afforded either the doubly bridged complexes [Et(4)N][(Me(2)Tp)W(=S)(micro-S)(2)M(PPh(3))] (M = Pt (3), Pd (4)), [(Me(2)Tp)W(=S)(micro-S)(2)M(cod)] (M = Ir, Rh (7)), [(Me(2)Tp)W(=S)(micro-S)(2)Rh(dppe)], [(Me(2)Tp)W(=S)(micro-S)(2)RuCp] (10), and [Et(4)N][(Me(2)Tp)W(=S)(micro-S)(2)W(CO)(3)] (12) or the triply bridged complexes including [(Me(2)Tp)W(micro-S)(3)PtMe(3)] (5), [(Me(2)Tp)W(micro-S)(3)IrCp][PF(6)] (9), and [Et(4)N][(Me(2)Tp)W(micro-S)(3)Mo(CO)(3)] (11), depending on the nature of the incorporated metal fragment. The X-ray analyses have been undertaken to clarify the detailed structures of 3-5, 7, and 9-12.  相似文献   

15.
de Silva N  Dahl LF 《Inorganic chemistry》2005,44(26):9604-9606
The preparation and molecular structure of the initial nanosized platinum-gold carbonyl cluster, Pt(13)[Au(2)(PPh(3))(2)](2)(CO)(10)(PPh(3))(4) (1), are described. A comparative analysis reveals its pseudo-D(2)(h) geometry, consisting of a centered Pt(13) icosahedron encapsulated by two centrosymmetrically related bidentate [Ph(3)PAu-AuPPh(3)]-capped ligands along with 4 PR(3) and 10 CO ligands, to be remarkably similar to that of the previously reported Pt(17)(mu(2)-CO)(4)(CO)(8)(PEt(3))(8) (2). Reformulation of 2 as Pt(13)[(PtPEt(3))(2)(mu(2)-CO)](2)(CO)(10)(PEt(3))(4) emphasizes the steric/electronic resemblance of the bulky-sized bidentate [Ph(3)PAu-AuPPh(3)] and [(PtPEt(3))(2)(mu(2)-CO)] capping ligands in 1 and 2, respectively, as well as their identical electron counts of 162 cluster valence electrons for a centered Pt(13) icosahedron. We hypothesize that analogous steric effects of their ligand polyhedra in 1 and 2 play a crucial role along with electronic effects in the formation and stabilization of these two nanosized clusters that contain an otherwise unknown centered icosahedron of platinum atoms.  相似文献   

16.
The oligodentate P,N ligand N,N,N',N'-tetrakis(diphenylphosphanyl)-1,3-diaminobenzene reacts with two equivalents of [{Rh(mu-Cl)(COD)}(2)], [NiBr(2)(DME)] or [PdCl(2)(NCMe)(2)](COD = 1,5-cyclooctadiene, DME = dimethoxyethane) in dichloromethane to give the tetranuclear complex [1,3-{cis-Rh(COD)(mu-Cl)(2)Rh(PPh(2))(2)N}(2)C(6)H(4)](1) or the dinuclear complexes [1,3-{cis-NiBr(2)(PPh(2))(2)N}(2)C(6)H(4)](2) and [1,3-{cis-PdCl(2)(PPh(2))(2)N}(2)C(6)H(4)](3), respectively. Compounds 1-3 were characterised by NMR ((1)H, (13)C, (31)P) and IR spectroscopy. The molecular structure of 2 and 3 shows the formation of a bis-chelate complex with M-P-N-P four-membered rings (M = Pd, Ni). An N,N,N',N'-tetrakis(diphenylphosphanyl)-1,3-diaminobenzene/Pd(OAc)(2) mixture was used for the copolymerisation of carbon monoxide with ethene or ethylidenenorbornene. Compound 1 was employed as catalyst in the hydrogenation of styrene.  相似文献   

17.
[PPh4]2[M(C2N2S2)2](M = Pt, Pd) and [Pt(C2N2S2)(PR3)2](PR3= PMe2Ph, PPh3) and [Pt(C2N2S2)(PP)](PP = dppe, dppm, dppf) were all obtained by the reaction of the appropriate metal halide containing complex with potassium cyanodithioimidocarbonate. The dimeric cyanodithioimidocarbonate complexes [[Pt(C2N2S2)(PR3)]2](PR3 = PMe2Ph), [M[(C2N2S2)(eta5-C5Me5)]2](M = Rh, Ir)and [[Ru(C2N2S2)(eta6-p-MeC6H4iPr)]2] have been synthesised from the appropriate transition metal dimer starting material. The cyanodithioimidocarbonate ligand is S,S and bidentate in the monomeric complexes with the terminal CN group being approximately coplanar with the CS2 group and trigonal at nitrogen thus reducing the planar symmetry of the ligand. In the dimeric compound one of the sulfur atoms bridges two metal atoms with the core exhibiting a cubane-like geometry.  相似文献   

18.
Reduction of TiCl(4) with 1 equiv of HSnBu(3) followed by addition of [PPh(4)]Cl and then PR(3) leads to two new dinuclear titanium(III) compounds, [PPh(4)][Ti(2)(&mgr;-Cl)(3)Cl(4)(PR(3))(2)] (R = Et and R(3) = Me(2)Ph), both of which contain an anion with the face-sharing bioctahedral type structure. Their crystal structures are reported. [PPh(4)][Ti(2)(&mgr;-Cl)(3)Cl(4)(PEt(3))(2)].2CH(2)Cl(2) crystallized in the triclinic space group P&onemacr;. Cell dimensions: a = 12.461(1) ?, b = 20.301(8) ?, c = 11.507(5) ?, alpha = 91.44 degrees, beta = 113.27(1) degrees, gamma = 104.27(2) degrees, and Z = 2. The distance between titanium atoms is 3.031(2) ?. [PPh(4)][Ti(2)(&mgr;-Cl)(3)Cl(4)(PMe(2)Ph)(2)].CH(2)Cl(2) also crystallized in the triclinic space group P&onemacr; with cell dimensitions a = 11.635(4) ?, b = 19.544(3) ?, c = 11.480(3) ?, alpha = 100.69(2) degrees, beta = 109.70(1) degrees, gamma = 95.08(2) degrees, and Z = 2. The distance between titanium atoms in this compound is 2.942(1) ?. Variable temperature magnetic susceptibilities were measured for [PPh(4)][Ti(2)(&mgr;-Cl)(3)Cl(4)(PEt(3))(2)]. Electronic structure calculations were carried out for a model ion, [Ti(2)(&mgr;-Cl)(3)Cl(4)(PH(3))(2)](-), and another well-known anion, [Ti(2)(&mgr;-Cl)(3)Cl(6)](3)(-), by employing an ab initio configuration interaction method. The results of the calculations reveal that the metal-metal interaction in these Ti(III) face-sharing compounds can be best described by strong antiferromagnetic coulping that leads to a singlet ground state and a thermally accessible triplet first excited state. Accordingly the measured magnetic data were satisfactorily fitted to a spin-only formula.  相似文献   

19.
The tetrahedral cluster [RuCo(3)(CO)(12)](-) reacts with various alkynes, including the new PhCtbd1;CC(O)NHCH(2)Ctbd1;CH (L(1)()), to afford the butterfly clusters [RuCo(3)(CO)(10)(micro(4)-eta(2)-RC(2)R')](-) (1, R = R' = C(O)OMe; 2, R = H, R' = Ph; 3, R = H, R' = MeC=CH(2); 4, R = H, R' = CH(2)OCH(2)Ctbd1;CH; 5, R = H, R' = CH(2)NHC(O)Ctbd1;CPh), in which the ruthenium atom occupies a hinge position and the alkyne is coordinated in a micro(4)-eta(2) fashion. Reaction of the anions 1-3 with [Cu(NCMe)(4)]BF(4) led to selective loss of the 12e fragment Co(CO)(-) to form [RuCo(2)(CO)(9)(micro(3)-eta(2)-RC(2)R')] (6, R = R' = C(O)OMe; 7, R = H, R' = Ph; 8, R = H, R' = MeC=CH(2)). To prepare functionalized RuCo(3) or FeCo(3) clusters that could be subsequently condensed with a silica matrix via the sol-gel method, we reacted [MCo(3)(CO)(12)](-) (M = Ru, Fe) with the alkyne PhCtbd1;CC(O)NH(CH(2))(3)Si(OMe)(3)(L(2)()) and obtained the butterfly clusters [MCo(3)(CO)(10)(micro(4)-eta(2)-PhC(2)C(O)NH(CH(2))(3)Si(OMe)(3))](-) 9 and 10, respectively. Air-stable [RuCo(3)(CO)(10)(micro(4)-eta(2)-Me(3)SiC(2)Ctbd1;CSiMe(3))](-) (11) was obtained from 1,4-bis(trimethylsilyl)butadiyne and reacted with [Cu(NCMe)(4)]BF(4) to give [RuCo(2)(CO)(9)(micro(3)-eta(2)-HC(2)Ctbd1;CSiMe(3))] (12), owing to partial ligand proto-desilylation, and not the expected [RuCo(2)(CO)(9)(micro(3)-eta(2)-Me(3)SiC(2)Ctbd1;CSiMe(3))]. Reaction of 11 with [NO]BF(4) afforded, in addition to 12, [RuCo(3)(CO)(9)(NO)(micro(4)-eta(2)-Me(3)SiC(2)Ctbd1;CSiMe(3))] (13) owing to selective CO substitution on a wing-tip cobalt atom with NO. The thermal reaction of 11 with [AuCl(PPh(3))] led to replacement of a CO on Ru by the PPh(3) originating from [AuCl(PPh(3))] and afforded [RuCo(3)(CO)(9)(PPh(3))(micro(4)-eta(2)-Me(3)SiC(2)Ctbd1;CSiMe(3))](-) (14), also obtained directly by reaction of 11 with one equivalent of PPh(3). Proto-desilylation of 11 using TBAF/THF-H(2)O afforded [RuCo(3)(CO)(10)(micro(4)-eta(2)-Me(3)SiC(2)Ctbd1;CH)](-) (15) which, by Sonogashira coupling with 1,4-diiodobenzene, yielded the dicluster complex [[RuCo(3)(CO)(10)(micro(4)-eta(2)-Me(3)SiC(2)Ctbd1;C)]](2)C(6)H(4)](2)(-) (16). The crystal structures of NEt(4).3a, NEt(4).4a, 6, NEt(4).11b, NEt(4).14, and [N(n-Bu)(4)].15a have been determined by X-ray diffraction. Preliminary results indicate the potential of silica-tethered alkyne mixed-metal clusters, obtained by the sol-gel method, as precursors to bimetallic particles.  相似文献   

20.
The complexes [Rh(Tp)(PPh(3))(2)] (1a) and [Rh(Tp)(P(4-C(6)H(4)F)(3))(2)] (1b) combine with PhC(2)H, 4-NO(2)-C(6)H(4)CHO and Ph(3)SnH to give [Rh(Tp)(H)(C(2)Ph)(PR(3))] (R = Ph, 2a; R = 4-C(6)H(4)F, 2b), [Rh(Tp)(H)(COC(6)H(4)-4-NO(2))(PR(3))] (R = Ph, 3a), and [Rh(Tp)(H)(SnPh(3))(PR(3))] (R = Ph, 4a; R = 4-C(6)H(4)F, 4b) in moderate to good yield. Complexes 1a, 2b, 3a, and 4a have been structurally characterized. In 1a the Tp ligand is bidentate, in 2b, 3a, and 4a it is tridentate. Crystal data for 1a: space group P2(1)/c; a = 11.9664(19), b = 21.355(3), c = 20.685(3) A; beta = 112.576(7) degrees; V = 4880.8(12) A(3); Z = 4; R = 0.0441. Data for 2b: space group P(-)1; a = 10.130(3), b = 12.869(4), c = 17.038(5) A; alpha = 78.641(6), beta = 76.040(5), gamma = 81.210(6) degrees; V = 2100.3(11) A(3); Z = 2; R = 0.0493. Data for 3a: space group P(-)1; a = 10.0073(11), b = 10.5116(12), c = 19.874(2) A; alpha = 83.728(2), beta = 88.759(2), gamma = 65.756(2) degrees; V =1894.2(4) A(3); Z = 2; R = 0.0253. Data for 4a: space group P2(1)/c; a = 15.545(2), b = 18.110(2), c = 17.810(2) A; beta = 95.094(3) degrees; V = 4994.1(10) A(3); Z = 4; R = 0.0256. NMR data ((1)H, (31)P, (103)Rh, (119)Sn) are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号