首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用酸性条件下,牛血清白蛋白(BSA)可降低银纳米粒子-变色酸2R(CT2R)体系的表面增强荧光效应,建立了一种测定BSA的荧光分析新方法。考察了pH值、CT2R的浓度、银纳米粒子浓度、试剂加入顺序和共存物质等因素对测定BSA的影响。实验结果表明,在pH值为5.72,CT2R的浓度为1.5×10-5mol/L,银纳米粒子浓度(以银原子计算)为1.25×10-4mol/L,按银纳米粒子、BSA、CT2R、BR缓冲溶液依次添加的条件下,BSA的线性范围为0.02~1.00 mg/L,检出限为0.002 6 mg/L。该法用于合成样品中BSA的测定,灵敏度高,重现性好,结果准确。  相似文献   

2.
铁(Ⅱ)能在具有催化活性的纳米TiO2表面产生化学发光辐射,表面活性剂十六烷基三甲基溴化铵(CTAB)的存在能显著增敏此发光强度。此外,纳米氧化钛也能增强Fenton反应的化学发光强度,据此,建立了纳米TiO2-CTAB-Fenton化学发光新体系检测铁(Ⅱ)的新方法。在优化条件下,亚铁离子在1.0×10-8~1.0×10-6mol/L浓度范围内与其化学发光强度呈现良好的线性关系,对1.0×10-7mol/L浓度的亚铁离子平行测定5次,相对标准偏差为3.9%,检出限为4.0×10-9mol/L。文中还对化学发光反应机理进行了初步探讨。  相似文献   

3.
基于碱性条件下,CeO_2纳米粒子能够有效增敏鲁米诺-KMnO_4体系的化学发光,并结合流动注射技术建立了一种对乙酰氨基酚测定的新方法。实验研究了影响化学发光检测信号的多种因素,并初步探讨了可能的化学发光机理。在最佳实验条件下,对乙酰氨基酚浓度在1.0×10-7~5.0×10-5mol/L范围内与相对化学发光强度的抑制值呈良好的线性相关,相关系数(r2)为0.996 4,检出限(3σ)为3.3×10-8mol/L。对5.0×10-6mol/L的对乙酰氨基酚溶液平行测定11次,计算得相对标准偏差(RSD)为0.3%。该法用于银翘片中对乙酰氨基酚含量的测定,回收率为98.0%;对尿液的加标回收率为97.9%~98.7%,结果满意。  相似文献   

4.
在碱性溶液中甲醛能还原Ag~+得到黄色银纳米粒子,使体系的共振光散射(RLS)强度增强,从而建立起测量环境中痕量甲醛的RLS新方法. 结果表明,新建方法测定甲醛的浓度线性范围为1.0×10~(-6)~2.0×10~(-5) mol/L,检出限为1.0×10~(-7) mol/L,样品加标测定的回收率为96.26%~103.32%. 并且不同浓度的甲醛还原Ag~+得到黄色银纳米粒子的颜色明显不同,基于此建立了一种可视化半定量测定痕量甲醛的新方法,此方法简便快速、灵敏度高. 用于环境水样、室内空气中甲醛的测定,结果满意.  相似文献   

5.
通过Na BH4还原Ag NO3得到胶体银纳米粒子,制作了以该纳米粒子修饰的银电极,研究了其在电催化中的应用,并对相关机理进行了探讨。基于酪氨酸对纳米银的还原信号有明显抑制作用,建立了胶体银纳米粒子修饰银电极在Na Ac-HAc缓冲溶液中用差分脉冲法检测酪氨酸的方法,并讨论了优化工作条件。结果表明,在p H=5.5时,峰电流与酪氨酸的浓度在1.0×10-8~1.0×10-3mol/L范围内呈良好的线性关系,检出限为4.2×10-9mol/L,峰电流Ip与酪氨酸浓度的负对数p C的线性回归方程为Ip(μA)=7.64 p C-15.69(R=99.73%)。用该方法检测氨基酸注射液中酪氨酸的含量,加标回收率在95.2%~107.8%之间。  相似文献   

6.
以NaBH4为还原剂,聚乙烯吡咯烷酮为稳定剂,室温下制备了银纳米粒子(AgNPs),用荧光、紫外光谱等进行表征。依诺沙星与聚乙烯吡咯烷酮纳米银相互作用后,使AgNPs荧光增强,由此建立测定依诺沙星的新方法。在最佳实验条件下,体系的荧光强度之比(F/F_0)与依诺沙星浓度呈良好线性关系,线性范围为1.0×10~(-7)~1.0×10~(-5) mol/L,检出限为8.0×10~(-8) mol/L。该方法用于实际样品中依诺沙星含量的测定,回收率为94.5%~99.8%。  相似文献   

7.
利用十六烷基三甲基溴化铵(CTMAB)与银纳米粒子作用生成的聚集体,使体系的共振光散射(RLS)强度明显增强,建立了一种快速、简便的测定痕量CTMAB的RLS光谱法。考察了p H值,反应最佳时间,试剂加入顺序等因素对测定CTMAB的影响。实验结果表明,在p H值为10.88,作用时间为10 min,银纳米粒子浓度(以银原子计算)为2.5×10-3mol·L-1,按CTMAB、BR、银纳米粒子为添加顺序的条件下,测定CTMAB的线性范围为:5.0×10-9~5.0×10-7mol·L-1,检出限为3.8×10-9mol·L-1。该法用于合成样品中CTMAB的测定,灵敏度高,重现性好,结果准确。  相似文献   

8.
李光文  林新华  林小燕 《电化学》2006,12(4):449-452
应用循环伏安法研究丹参酮ⅡA在玻碳电极上的电化学行为并建立差示脉冲伏安法测定含量.在pH 4.0醋酸盐缓冲液中,差示脉冲伏安氧化峰电流与丹参酮ⅡA浓度(3.0×10-7~2.0×10-5mol.L-1)呈良好的线性关系,检测限为2.0×10-8mol.L-1.玻碳电极可有效消除样品中其它组分对丹参酮ⅡA测定的干扰,已成功用于实际样品中丹参酮ⅡA含量的直接测定.该方法灵敏度高、检测范围宽,结果令人满意.  相似文献   

9.
反向流动注射化学发光法测定姜黄素   总被引:2,自引:0,他引:2  
铁氰化钾氧化鲁米诺在碱性介质中产生化学发光,姜黄素对该体系化学发光具有强烈的抑制作用。因此,利用该化学发光的抑制体系,结合反向流动注射技术,建立了测定大黄类药物姜黄素含量的新方法。在优化的条件下,化学发光抑制信号强度ΔI与姜黄素的浓度分别在1×10-7~1×10-6和1×10-6~1×10-5mol/L范围内呈良好的线性关系,检出限为1×10-9mol/L。对2.0×10-6mol/L的姜黄素进行平行测定10次,得相对标准偏差(RSD)为1.8%。方法应用于中药姜黄中姜黄素(总姜黄素计)的含量测定。  相似文献   

10.
溴酸钾-酸性铬蓝K化学发光法检测水中微量NO2-   总被引:2,自引:0,他引:2  
利用NO2-对溴酸钾-酸性铬蓝K体系的化学发光有显著的增强作用,建立了检测亚硝酸盐的新方法。着重对化学发光条件,包括溴酸钾浓度、酸性铬蓝K浓度、管长、流速及酸度条件进行了实验研究,并利用该方法对地下水及当地雨水进行了检测。实验结果表明,当溴酸钾浓度为0.1 mol/L、酸性铬蓝K浓度为1.0×10-4mol/L、管长为40 cm、流速为2.5 mL/min及硫酸为0.5 mol/L时,本方法检测NO2-的线性范围为1.0×10-8~8.0×10-5mol/L,检出限为1.1×10-10mol/L;对1.0×10-7mol/L和1.0×10-5mol/L的NO2-进行11次平行测定,相对标准偏差分别为1.6%和2.1%;对天然水中NO2-检测,结果满意。对化学发光机理进行了初步探讨。  相似文献   

11.
本文基于苦味酸对罗丹明B(RhB)的荧光猝灭作用,以RhB/壳聚糖(CS)/SiO_(2)纳米粒子为探针,建立了一种检测苦味酸的荧光分析新方法。实验采用反相微乳液法,以CS为模板合成了CS/SiO_(2)纳米粒子,然后通过振荡组装制备得到RhB/CS/SiO_(2)纳米粒子,并基于苦味酸对RhB/CS/SiO_(2)纳米粒子的荧光猝灭作用实现了苦味酸的检测。在优化的实验条件下,5.0×10^(-6)~6.0×10^(-4)mol/L浓度范围内苦味酸与体系荧光猝灭值呈线性关系(r=0.9990),检出限为3.0×10^(-6)mol/L。方法用于水样中苦味酸的测定,回收率在98.0%~100.4%之间。  相似文献   

12.
毛细管电泳-化学发光联用新方法检测色氨酸   总被引:2,自引:0,他引:2  
基于色氨酸对三(1,10-菲咯啉)钌(Ⅱ)[Ru(phen)32+]-Ce(Ⅳ)体系化学发光的增强作用,结合毛细管电泳分离技术,提出了一种毛细管电泳-化学发光检测色氨酸的新方法。在最优化的分离和检测条件下,该方法测定色氨酸的线性范围为5.0×10-7~2.0×10-5mol/L,检测限为7.6×10-8mol/L。将其应用于复方氨基酸注射液(18AA)中L-色氨酸含量的测定,结果满意。  相似文献   

13.
流动注射-抑制化学发光法测定镱(Ⅲ)   总被引:1,自引:0,他引:1  
在碱性介质中, Yb(Ⅲ)对Luminol-KMnO4体系化学发光强度具有抑制作用, 据此建立了一种测定Yb(Ⅲ)的化学发光新方法. 在优化的实验条件下, 化学发光强度与Yb(Ⅲ)的浓度在4.0×10-7~1.0×10-4 mol/L范围内呈现出良好的线性关系. 其检测限(3σ)为5.0×10-8 mol/L, 对8.0×10-5 mol/L的Yb(Ⅲ)溶液进行测定, 相对标准偏差为3.9% (n=11). 本法已应用于合成样品中的镱的测定.  相似文献   

14.
磁纳米探针检测人绒毛膜促性腺激素   总被引:1,自引:1,他引:1  
采用链霉亲和素包被磁纳米粒子,将生物素标记的特异性抗体偶联在磁纳米粒子上,制备出高特异性的磁纳米探针;利用此探针对人绒毛膜促性腺激素(HCG)进行测定,建立了定量检测蛋白类激素的化学发光分析方法.利用紫外可见分光光度计、透射电镜及动态光散射仪对磁纳米探针进行表征,同时对化学发光实验条件进行优化.在2×10~(-4) mol/L鲁米诺、8×10~(-4) mol/L H_2O_2, pH=13的优化条件下,将磁纳米探针用于HCG的定量检测.结果表明,所测发光强度与待测HCG浓度之间线性相关,相关系数r为0.9924,线性检测范围由常规板式ELISA的5~200 μg/L扩展到0.5~250 μg/L;相对标准偏差为3.82%.采用本方法和常规ELISA法同时对34份人血清标本HCG进行测试,两者相关性良好.利用制备的磁纳米探针定量测定微量蛋白类激素,具有灵敏、高效、快捷、检测范围宽等优点,有望应用于其它微量蛋白的检测.  相似文献   

15.
磺胺脒对Ni(Ⅳ)配合物-鲁米诺发光新体系有显著抑制作用,由此建立了Ni(Ⅳ)配合物-鲁米诺流动注射化学发光体系测定磺胺脒的新方法。在优化条件下,磺胺脒在6.0×10-7~6.0×10-6mol/L浓度范围内与体系的相对发光强度呈良好线性关系,方法检出限(3σ)为2.4×10-10mol/L。取2.4×10-6mol/L磺胺脒进行11次平行测定,相对标准偏差(RSD)为1.4%。方法用于饲料中磺胺脒含量的测定,结果满意。  相似文献   

16.
采用反相微乳液法合成了Chitosan/SiO_2纳米粒子,通过振荡组装将荧光染料罗丹明B(RhB)固定于该纳米粒子上,制备成RhB/Chitosan/SiO_2纳米粒子。基于Cu~(2+)对Rh B/Chitosan/SiO_2纳米粒子的荧光猝灭作用建立了定量测定Cu~(2+)的荧光分析方法,探讨了测定机理,优化了实验条件。在优化条件下,Cu~(2+)浓度与体系荧光猝灭值在2. 4×10~(-7)~2. 5×10~(-5)mol/L范围内呈线性关系,线性方程ΔF=2. 98×10~7c+612. 11(r=0. 997),检出限为0. 22μmol/L (3s/k),方法用于延河水中Cu~(2+)的测定,加标回收率为98. 7%~103. 3%。  相似文献   

17.
阿米卡星诱导金纳米粒子的快速团聚,使其在520 nm处吸收值降低,同时在640 nm附近产生新吸收,且两处吸光度比值(A640/A520)的变化与阿米卡星的浓度呈正比,据此建立了测定阿米卡星的新方法。对p H、反应时间以及纳米金浓度等实验条件进行了优化,在优化实验条件下,测定阿米卡星的线性范围为2.0×10-7~5.0×10-6mol/L,检出限为0.6×10-8mol/L,相对标准偏差(RSD)为1.9%(n=11)。方法用于硫酸阿米卡星注射液的测定,回收率在100.0%~105.0%。  相似文献   

18.
本文基于磁性粒子(MB)良好的分离、富集能力,研究了硫化铜纳米粒子标记的流动注射-化学发光(FI-CL)DNA检测体系.通过硫化铜标记的探针1与目标DNA及连有磁球的探针2形成三明治结构,实现对目标DNA的捕获、分离与标记;通过其溶解释放出CuS标记颗粒的铜离子,引起化学发光信号增强,实现了目标DNA序列的定性定量检测.该方法对完全互补单链DNA(ssDNA)检测的线性范围为1.0×10-11~1.6×10-9 mol/L,检出限为3.0×10-12 mol/L,对1.0×10-9 mol/L目标DNA测定的相对标准偏差为3.2%(n=11),对目标碱基序列具有良好的识别能力.  相似文献   

19.
碱性条件下,对乙酰氨基酚对鲁米诺-过氧化氢-纳米银化学发光体系有较强的抑制作用,基于此,结合流动注射技术,建立了测定对乙酰氨基酚的新方法。研究了影响化学发光强度的各种因素,并初步探讨了可能的发光机理。在最佳实验条件下,对乙酰氨基酚浓度在2.0×10-8~1.0×10-4mol/L范围内与相对发光强度呈线性关系,检出限(3σ)为4.0×10-9mol/L。对1.0×10-7mol/L的对乙酰氨基酚平行测定9次,相对标准偏差为2.6%。该法用于片剂中扑热息痛含量的测定,结果令人满意。  相似文献   

20.
在碱性环境下,银(Ⅲ)配合物可与鲁米诺产生化学发光,醋酸泼尼松对该发光体系具有显著的增敏作用,据此提出了流动注射银(Ⅲ)配合物-鲁米诺化学发光体系测定醋酸泼尼松含量的方法。优化的试验条件如下:1鲁米诺溶液中氢氧化钠的浓度为0.6mol·L-1;2鲁米诺溶液的浓度为8.0×10-7 mol·L-1;3银(Ⅲ)配合物溶液中氢氧化钠的浓度为1.7mol·L-1;4银(Ⅲ)配合物溶液的浓度为5.0×10-5 mol·L-1。醋酸泼尼松的线性范围为6.0×10-8~8.0×10-5 mol·L-1,方法的检出限(3s/k)为2.9×10-9 mol·L-1。对1.0×10-6 mol·L-1醋酸泼尼松标准溶液连续测定11次,测定值的相对标准偏差为2.9%。加标回收率在100%~105%之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号