首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A survey of the status of laser safety in UK laser companies is reported. UK laser manufacturers/suppliers were questioned on the types of laser sold, their application and about their laser safety schemes. Nearly two-thirds of suppliers produce lasers in the Class IIIB and IV categories, i.e. those requiring the highest level of safety precautions. However, just under half the companies had difficulties in implementing the current UK laser safety standards (BS 7192/IEC 825). A case is demonstrated for a mechanism providing practical advice on implementation of these standards. This is further strengthened by comparison of a survey carried out five years ago indicating a similar number of manufacturers with difficulties.  相似文献   

2.
Federal law requires that all laser products that are imported into or introduced into commerce in the United States comply with the performance standard published in the Code of Federal Regulations (CRF), Title 21, Parts 1040.10 and 1040.11, administered by the Center for Devices and Radiological Health (CDRH), US Food and Drug Administration. Although it contains somewhat different requirements for hazard classification, engineering controls and labeling, the ANSI Z136.1 standard defers to the CDRH standard. The CDRH standard became effective in August, 1976 and was amended, in 1978 and also in 1985. In the early 1990s, US experts met to formulate an approach to bring the requirements of the CDRH standard and those of the International Electrotechnical Commission (IEC) standard, IEC 825, into closer agreement in order to lower barriers to international trade and to remove any excessive compliance burdens on manufacturers. In 1993, the CDRH published, formally in the Federal Register and informally, a Notice of Intent to amend the CDRH standard. Responses to those notices have now been analyzed and informal draft amendments were distributed in 1996. This draft is now being prepared for formal issuance as a Notice of Proposed Rulemaking. Meanwhile, the IEC standard was amended in 1993 and republished as IEC 825-1; these amendments created considerable controversy since they resulted in over classification of the hazard of many products, especially light emitting diodes (LEDs) that have a large divergence and increased source dimensions. Additional amendments are now being developed to correct this problem. The CDRH has carefully monitored developments in the IEC and actively participated in its proceedings as a guide in developing its own proposal. This paper describes the major changes that are being proposed for the CDRH standard and presents some rationale for the major changes. The more significant changes include expansion of applicability to include LEDs, reduced emission durations for classification, revised measurement for hazard classification, reduced performance requirements for lower power visible radiation products, and revised requirements for medical products.  相似文献   

3.
Work being carried out at the University of Hull into the application of high power laser diodes to the soldering process is described. The commercial availability of semiconductor diode lasers has brought an exciting new soldering tool to the manufacturers of electronics assemblies: trends in electronics assembly are to increasingly high-density interconnections and increasing device functionality. Packages are reducing in size and pin-out counts are increasing. Currently 0.010–0.016 inch lead pitch devices are being introduced by many manufacturers. Lasers can be used with advantage in the soldering of such fine and precise devices and high-power semiconductor laser diodes can be used to build compact, flexible and controllable soldering units. With computer control of the power and duration of the laser energy it is possible to ensure consistent and reliable soldering. To achieve this, however, the various parameters involved in the laser beam-solder assembly interaction need to be carefully defined. This paper reports on our identification of these parameters and the salient design features of an automated diode laser soldering system.  相似文献   

4.
当前,全固态激光器在向万瓦级大功率方向发展的同时,也在向微型化发展。利用碟片全固态激光器可获得千瓦级以上激光,利用微片全固态激光器则可实现小体积、高密度、中小功率激光输出。获得高功率高密度激光的关键在于激光材料。本文从碟片和微片激光器的发展和对激光基质材料的要求出发,概述自激活激光晶体的研究,特别对四硼酸铝钕[NdAl3(BO3)4,简称NAB]晶体的结构、生长、性质及其作为有应用前景的小型片状激光器的候选材料作了详细的介绍。近期,采用面积为4×4 mm2,厚度为0.39 mm的微片NAB晶体,用885 nm半导体激光器为光源泵浦,获得了4.6 W的1.063 μm激光的有效输出,其斜效率达到64%,充分显示了NAB晶体作为自激活激光晶体在微片激光器中的应用前景。  相似文献   

5.
To complete a successful laser jamming to imaging charge coupled device (CCD) based on combined fiber lasers, the interactions between CCD and combined fiber lasers were analyzed in detail. The saturation and crosstalk thresholds of CCD were achieved, which are lower than 10 mW/cm2. Through theoretical analysis and numerical simulations, the thermal processes under single pulse, multi-pulses and continuous laser irradiations were developed. The simulation results have proved the possibility of hard damage caused by multi-pulses and continuous laser irradiations. The combined fiber lasers is suitable to deploy optical saturation jamming at present. The further applications of combined fiber lasers need a more powerful laser source and a more accurate tracking and pointing system.  相似文献   

6.
四硼酸铝钕晶体及其小型全固态激光器   总被引:1,自引:0,他引:1  
当前,全固态激光器在向万瓦级大功率方向发展的同时,也在向微型化发展。利用碟片全固态激光器可获得千瓦级以上激光,利用微片全固态激光器则可实现小体积、高密度、中小功率激光输出。获得高功率高密度激光的关键在于激光材料。本文从碟片和微片激光器的发展和对激光基质材料的要求出发,概述自激活激光晶体的研究,特别对四硼酸铝钕[NdAl3(BO3)4,简称NAB]晶体的结构、生长、性质及其作为有应用前景的小型片状激光器的候选材料作了详细的介绍。近期,采用面积为4×4 mm2,厚度为0.39 mm的微片NAB晶体,用885 nm半导体激光器为光源泵浦,获得了4.6 W的1.063μm激光的有效输出,其斜效率达到64%,充分显示了NAB晶体作为自激活激光晶体在微片激光器中的应用前景。  相似文献   

7.
This paper introduces and analyzes revolutionary laser system architecture capable of dramatically reducing the complexity of laser systems while simultaneously increasing capability. The architecture includes three major subsystems. The first is a phased array of laser sources. In this article, we discuss diode-pumped fiber lasers as the elements of the phased array, although other waveguide lasers can also be considered. The second provides wavefront control and electronics beam steering, as described in an IEEE Proceedings article on “Optical Phased Array Technology” [1]. The third is subaperture receiver technology. Combining these three technologies into a new laser systems architecture results in a system that has graceful degradation, can steer to as wide an angle as individual optical phased array subapertures, and can be scaled to high power and large apertures through phasing of a number of subapertures. Diode-pumped fiber lasers are appealing as laser sources because they are electrically pumped, efficient, relatively simple, and scalable to significant power levels (over 100 Watts has been demonstrated from a single diode-pumped fiber laser) [2]. The fiber laser design also lends itself to integration into a phased array. Fiber lasers have been phased. Initial phasing demonstrations have been at low power and were conducted by taking a single source, dividing it into multiple fibers, then phasing them together. To develop this technology further we need to use independent fiber lasers or fiber amplifiers, seeded by a common source, and to increase laser power. As we increase laser power, we will have to learn to cope with nonlinearities in the laser amplifiers. Optical Phased Array technology has demonstrated steering over a 90-degree field of regard [4], although this approach used additional optical components. If we use straightforward optical phased array beam steering without additional optics we can steer with high efficiency to about one-third λ/d, where d is the smallest individually addressable element. The one-third factor depends on the efficiency threshold. For example, if we use 1.5 μm light, and 5 μm center-to-center spacing, we can steer with high efficiency to about ±6 degrees, or a field of regard of 12 degrees. Last, we need to develop a subaperture receive technology. This can be a pupil plane receiver, an image plane receiver, or some combination of the approaches. When we have matured each individual technology and combined them into new laser systems architectures, we will have the ability to build simpler and more capable laser systems. The vision for an integrated, phased array laser concept is to enable a new class of laser systems with significant advantages, including high-efficiency, all-electric laser source; all waveguide beam transport; wavefront control at the sub-aperture level (enabling wavefront compensation, conformal apertures, and wide-angle electronic beam steering); random access beam pointing over wide angles; multiple simultaneous beam generation and control; and graceful degradation.  相似文献   

8.
The Linac coherent light source (LCLS) at the SLAC National Accelerator Laboratory (SLAC) is the world’s first hard X-ray free electron laser (XFEL) and is capable of producing high-energy, femtosecond duration X-ray pulses. A common technique to study fast timescale physical phenomena, various “pump/probe” techniques are used. In these techniques there are two lasers, one optical and one X-ray, that work as a pump and as a probe to study dynamic processes in atoms and molecules. In order to resolve phenomena that occur on femtosecond timescales, it is imperative to have very precise timing between the optical lasers and X-rays (on the order of ~20 fs or better). The lasers are synchronized to the same RF source that drives the accelerator and produces the X-ray laser. However, elements in the lasers cause some drift and time jitter, thereby de-synchronizing the system. This paper considers cross-correlation technique as a way to quantify the drift and jitter caused by the regenerative amplifier of the ultrafast optical laser.  相似文献   

9.
The dynamics and noise of semiconductor lasers under optical feedback (OFB) have been simulated. The study is performed as applied to an optic-disc system in which laser radiation is reflected by the disc surface and re-injected into the laser cavity. We examine the possibility of suppressing OFB-induced noise in the optic-disc system by the technique of superposition of high-frequency current. The study is based on numerical integration of the time-delay rate equations of semiconductor lasers under OFB. The laser noise is evaluated in terms of the spectral profile of relative intensity noise (RIN). It is shown that RIN is enhanced when states of chaos are generated, and attains minimum levels under continuous-wave operation just before the laser starts the route to chaos. The suppression of RIN in the low-frequency regime is achieved when the superposition-current frequency exceeds the laser resonance frequency by factors of 0.8, 1.0, and 1.1 and when the modulation depth exceeds 0.4.  相似文献   

10.
建立了在同一块非线性激光晶体上实现自混频激光的理论模型。该模型计入了具有任意腰斑大小的泵浦光和腔内基频光的空间分布,并将该模型应用到NYAB和Nd:GdCOB的自混频蓝光实验。理论分析预测和证实了一些实验结果,同时,讨论和总结了提高自混频激光输出效率的途径。  相似文献   

11.
随着半导体激光器在工业、军事、核能等领域的应用越来越多,单个迭阵输出的光功率密度已经不能满足实际的需求,这就需要将多个半导体激光迭阵的光束耦合成为一个共同的光束,以提高输出功率和亮度.所以采用怎样的光束耦合技术能实现高亮度、高质量的激光输出就成了一个关键性的问题.对于该技术的研究,国内还没有实验方面的报道.主要介绍了大功率半导体激光器偏振耦合原理、实验的技术路线,以及对808nm半导体激光迭阵进行耦合实验的结果及分析.对2个bar、功率为40W/bar的808nm连续半导体激光迭阵,实现偏振耦合的总效率超过90%,聚焦得直径为3mm光斑,输出功率达到134W,总体效率超过84%.对7个bar、峰值功率100W/ba、r占空比20%的808nm准连续半导体激光迭阵进行了偏振耦合,其效率达到67%,得到4.5mm×4.5mm的光斑.  相似文献   

12.
The chemical composition of tattooing pigments has varied greatly over time according to available technologies and materials. Beginning with naturally derived plant and animal extracts, to coloured inorganic oxides and salts, through to the modern industrial organic pigments favoured in today's tattooing studios. The demand for tattooing is steadily growing as it gains cultural popularity and acceptance in today's society, but ironically, increasing numbers of individuals are seeking laser removal of their tattoos for a variety of reasons. Organic pigments are favoured for tattooing because of their high tinting strength, light fastness, enzymatic resistance, dispersion and relatively inexpensive production costs. Adverse reactions have been reported for some organic inks, as well as potential complications, during laser removal procedures stemming from the unintentional creation of toxic by‐products. Currently, regulatory bodies such as the US Food and Drug Administration have not approved any coloured inks to be injected into the skin, and tattoo ink manufacturers often do not disclose the ingredients in their products to maintain proprietary knowledge of their creations. A methodology was established using micro‐Raman spectroscopy on an animal model to correctly identify the constituents of a selection of modern, organic tattoo inks in situ or post procedure, within the skin. This may serve as a preliminary tool prior to engaging in Q‐switched laser removals to assess the risks of producing potentially hazardous compounds. Likewise, the pigments responsible for causing adverse reactions in some patients may be quickly identified to hasten any corresponding treatment. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Lasers for materials processing: specifications and trends   总被引:2,自引:0,他引:2  
An overview is given of the types of lasers dominating the field of laser materials processing. The most prominent lasers in this field are the CO2 and the Nd: YAG laser. The domain of CO2 lasers is applications which demand high laser powers (up to 30 kW are available at present), whereas the domain of Nd:YAG lasers is micro-machining applications. In the kilowatt range of laser output power, the two types of lasers are in competition. New diffusion-cooled CO2 laser systems are capable of output laser powers of several kilowatts, with good beam qualities, while still being quite compact. The output power and beam quality of Nd:YAG lasers has been improved in recent years, so that Nd:YAG lasers are now an alternative to CO2 lasers even in the kilowatt range. This is especially true for applications that demand optical fibre transmission of the laser beam, which is possible with Nd:YAG laser light but not with the longerwavelength light emitted by CO2 lasers. The main problem in solid-state lasers such as Nd:YAG is the thermal lensing effect and damage due to thermal stresses. In order to reduce thermal loading, cooling has to be enhanced. Several alternative geometries have been proposed to reduce thermal loading and, by this, thermal lensing effects. There are now slab and tube geometries which allow much higher output powers than the conventionally used laser rods. A very new scheme proposes a thin slab whose cooled side is also used as one of the laser mirrors, so that thermal gradients occur mainly in the direction of the beam propagation and not perpendicular to it, as is the case in the other geometries. As well as CO2 and Nd:YAG lasers, semiconductor laser diodes are very promising for direct use of the emitted light or as pump sources for Nd:YAG and other solid-state lasers. When packaging together thousands of single laser diodes, output powers of several kilowatts can be realized. Major problems are collimation of the highly divergent laser beams and cooling of the laser diode bars.  相似文献   

14.
《中国物理 B》2021,30(7):74203-074203
We propose and demonstrate an alternative method for spectral filtering and frequency stabilization of both 780-nm and 960-nm lasers using a high-finesse length-tunable cavity(HFLTC). Firstly, the length of HFLTC is stabilized to a commercial frequency reference. Then, the two lasers are locked to this HFLTC using the Pound–Drever–Hall(PDH) method which can narrow the linewidths and stabilize the frequencies of both lasers simultaneously. Finally, the transmitted lasers of HFLTC with each power up to about 100 μW, which act as seed lasers, are amplified using the injection locking method for single-atom Rydberg excitation. The linewidths of obtained lasers are narrowed to be less than 1 k Hz, meanwhile the obtained lasers' phase noise around 750 k Hz are suppressed about 30 d B. With the spectrally filtered lasers, we demonstrate a Rabi oscillation between the ground state and Rydberg state of single-atoms in an optical trap tweezer with a decay time of(67 ± 37) μs, which is almost not affected by laser phase noise. We found that the maximum short-term laser frequency fluctuation of a single excitation lasers is at ~ 3.3 k Hz and the maximum long-term laser frequency drift of a single laser is ~ 46 k Hz during one month. Our work develops a stable and repeatable method to provide multiple laser sources of ultra-low phase noise, narrow linewidth, and excellent frequency stability, which is essential for high precision atomic experiments, such as neutral atom quantum computing, quantum simulation, quantum metrology, and so on.  相似文献   

15.
宁存政 《物理学进展》2011,31(3):145-160
半导体纳米激光的研究是目前纳米技术(或纳米光子学)和半导体激光交汇产生的研究前沿。本文将综述这一领域最近一些最激动人心的进展。我们将集中讨论两种半导体纳米结构的纳米激光:自下而上生长而成的纳米线和自上而下刻蚀制成的纳米柱状结构。本文将综述这些纳米激光器的特殊特征,特别是利用表面等离子效应而成制成的金属{半导体等离子体激光,即目前世界上最小激光器的最新进展。由于这些纳米激光器的微小的尺寸以及对光在空间限制增强,我们必须重新检验半导体激光器中某些熟悉的概念在纳米尺度上的正确性和含义,例如模式增益和光限制因子(CF)的概念。本文将从统一的观点解释光限制因子在电介质和等离子体纳米激光器中的某些似乎反常的行为。在本文的通篇论述中,我们将尝试回答究竟激光器的尺寸能够小到什么程度,或者激光器的尺寸是否存在一个最小极限等基本问题。  相似文献   

16.
王琛  李汉明  李英骏  张杰  王世绩 《物理》2005,34(2):143-146
内壳层跃迁机制是实现超短波长激光的一种很有潜力的方案,随着近年来超短超强激光技术和X射线激光实验方法的进展,实现内壳层跃迁机制的超短波长硬X射线激光不再是遥不可及的梦想,文章详细介绍了内壳层跃迁机制X射线激光的原理,并讨论了开展内壳层跃迁机制X射线激光实验的一些实际相关问题。  相似文献   

17.
Lasing in random media   总被引:2,自引:0,他引:2  
A random laser is a non-conventional laser whose feedback mechanism is based on disorder-induced light scattering. Depending on whether the feedback supplied by scattering is intensity feedback or amplitude feedback, random lasers are classified into two categories: random lasers with incoherent feedback and random lasers with coherent feedback. A brief survey of random lasers with incoherent feedback is presented. It is followed by a review of our recent experimental work on random lasers with coherent feedback, including measurement of the lasing threshold, lasing spectra, emission pattern, dynamical response, photon statistics, speckle pattern and the investigation of relevant length scales. Large disorder leads to spatial confinement of the lasing modes, that is the foundation for the micro random laser. Some theoretical models of random lasers with coherent feedback are briefly introduced. The study of random lasers improves our understanding of the interplay between light localization and coherent amplification.  相似文献   

18.
The peak-power-density stability and beam-wander precision of a probe laser are important factors affecting the inspection results in precise thin-film optical measurements. These factors are also key to evaluating a probe laser for in-line long-time operation of precise thin-film optical measurements. The peak-power density and beam wander of liner helium–neon (He–Ne) lasers, random He–Ne lasers, and diode lasers as functions of time are investigated experimentally using a beam profiler. It is found that the linear polarized He–Ne laser is considered to be a promising candidate for a probe laser employed in precise thin-film optical measurements due to better peak-power-density stability and beam-wander precision. Both the peak-power-density stability and beam-wander precision of He–Ne lasers are usually better than that of diode lasers, but an adequate warm-up of He–Ne laser for 30 min is required before thin-film optical measurements are made. After 12 h operation, the linear polarized He–Ne laser is suitable for precise thin-film optical measurements because both the peak-power-density stability and the beam-wander precision reach the minimum level. A cost-effective system composed of two linear polarized He–Ne lasers for long-term operation is proposed. This system can operate for around 0.5–1.2 years in precise thin-film optical measurements under the normal operating life of a He–Ne laser by switching the probe laser every 18 h.  相似文献   

19.
This article reviews the programme of laser research and development being carried out in the Chemistry Division of the US Naval Research Laboratory. It discusses its impact on the overall laser field, particularly in research on chemical lasers, dynamics of laser processes, and laser-promoted chemical reactions. The future direction of laser research and laser applications in the Chemistry Division is outlined and a few specific experiments either under way or planned are described.  相似文献   

20.
随着后摩尔时代的到来,对大容量、高速度信息处理的需求使得半导体器件应用由电子集成转向光子集成,高性能微纳激光器是实现光子集成的重要环节.种类丰富的半导体材料促进了半导体微纳激光器的快速发展,近年来,随着大量新型半导体材料(如二维半导体、铅卤钙钛矿等)的涌现,有望实现半导体微纳激光器性能的进一步提升.由于钙钛矿材料具有高光吸收、缺陷高容忍、激子结合能大等优异光学性质,使其成为高增益、低阈值半导体微纳激光器的优秀候选材料.法布里-珀罗(F-P)谐振腔激光器是钙钛矿激光器中研究广泛、结构简单、应用价值较高的一类激光器.本文以铅卤钙钛矿F-P谐振腔激光器为例,对其工作机理以及近年来的研究成果进行综述,从激子与光子弱耦合的光子激光和强耦合的极化子激光两个方面出发,详细介绍了钙钛矿材料既作为增益介质又作为谐振腔的F-P结构激光器以及仅作为增益介质的F-P腔激光器的激光的产生原理和影响因素,最后总结了钙钛矿F-P谐振腔激光器当前面临的挑战,展望了其进一步发展可能具备的前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号