首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that conformal maps of simply connected domains with an analytic boundary to a unit disk have an intimate relation to the dispersionless 2D Toda integrable hierarchy. The maps are determined by a particular solution to the hierarchy singled out by the conditions known as “string equations”. The same hierarchy locally solves the 2D inverse potential problem, i.e., reconstruction of the domain out of a set of its harmonic moments. This is the same solution which is known to describe 2D gravity coupled to c= matter. We also introduce a concept of the τ-function for analytic curves. Received: 20 December 1999/ Accepted: 2 March 2000  相似文献   

2.
We study systems of globally coupled interval maps, where the identical individual maps have two expanding, fractional linear, onto branches, and where the coupling is introduced via a parameter - common to all individual maps - that depends in an analytic way on the mean field of the system. We show: 1) For the range of coupling parameters we consider, finite-size coupled systems always have a unique invariant probability density which is strictly positive and analytic, and all finite-size systems exhibit exponential decay of correlations. 2) For the same range of parameters, the self-consistent Perron-Frobenius operator which captures essential aspects of the corresponding infinite-size system (arising as the limit of the above when the system size tends to infinity), undergoes a supercritical pitchfork bifurcation from a unique stable equilibrium to the coexistence of two stable and one unstable equilibrium.  相似文献   

3.
Wang S  Xie Y  Qu Z 《New journal of physics》2008,10(5):55001-55024
Low-dimensional iterated map models have been widely used to study action potential dynamics in isolated cardiac cells. Coupled iterated map models have also been widely used to investigate action potential propagation dynamics in one-dimensional (1D) coupled cardiac cells, however, these models are usually empirical and not carefully validated. In this study, we first developed two coupled iterated map models which are the standard forms of diffusively coupled maps and overcome the limitations of the previous models. We then determined the coupling strength and space constant by quantitatively comparing the 1D action potential duration profile from the coupled cardiac cell model described by differential equations with that of the coupled iterated map models. To further validate the coupled iterated map models, we compared the stability conditions of the spatially uniform state of the coupled iterated maps and those of the 1D ionic model and showed that the coupled iterated map model could well recapitulate the stability conditions, i.e., the spatially uniform state is stable unless the state is chaotic. Finally, we combined conduction into the developed coupled iterated map model to study the effects of coupling strength on wave stabilities and showed that the diffusive coupling between cardiac cells tends to suppress instabilities during reentry in a 1D ring and the onset of discordant alternans in a periodically paced 1D cable.  相似文献   

4.
The dynamics of globally coupled map lattices can be described in terms of a nonlinear Frobenius-Perron equation in the limit of large system size. This approach allows for an analytical computation of stationary states and their stability. The bifurcation behavior of coupled tent maps near the chaotic band merging point is presented. Furthermore, the time-independent states of coupled logistic equations are analyzed. The bifurcation diagram of the uncoupled map carries over to the map lattice. The analytical results are supplemented with numerical simulations  相似文献   

5.
Efficient numerical methods for analyzing photonic crystals (PhCs) can be developed using the Dirichlet-to-Neumann (DtN) maps of the unit cells. The DtN map is an operator that takes the wave field on the boundary of a unit cell to its normal derivative. In frequency domain calculations for band structures and transmission spectra of finite PhCs, the DtN maps allow us to reduce the computation to the boundaries of the unit cells. For two-dimensional (2D) PhCs with unit cells containing circular cylinders, the DtN maps can be constructed from analytic solutions (the cylindrical waves). In this paper, we develop a boundary integral equation method for computing DtN maps of general unit cells containing cylinders with arbitrary cross sections. The DtN map method is used to analyze band structures for 2D PhCs with elliptic and other cylinders.  相似文献   

6.
The phase-locking dynamics in 1D and 2D lattices of non-identical coupled circle maps is explored.A global phase locking can be attained via a cascade of clustering processes with the increase of the coupling strength.Collective spatiotemporal dynamics is observed when a global phase locking is reached.Crisis-induced desynchronization is found,and its consequent spatiotemporal chaos is studied.  相似文献   

7.
We consider networks of chaotic maps with different network topologies. In each case, they are coupled in such a way as to generate synchronized chaotic solutions. By using the methods of control of chaos we are controlling a single map into a predetermined trajectory. We analyze the reaction of the network to such a control. Specifically we show that a line of one-dimensional logistic maps that are unidirectionally coupled can be controlled from the first oscillator whereas a ring of diffusively coupled maps cannot be controlled for more than 5 maps. We show that rings with more elements can be controlled if every third map is controlled. The dependence of unidirectionally coupled maps on noise is studied. The noise level leads to a finite synchronization lengths for which maps can be controlled by a single location. A two-dimensional lattice is also studied.  相似文献   

8.
We investigate the motion of the globally coupled maps (logistic map) driven by uniform disorder. It is shown that this disorder can produce multi-synchronization for the globally coupled chaotic maps studied by us. The disorder determines the synchronized dynamics, leading to the emergence of a wide range of new collective behaviour in which the individual units in isolation are incapable of producing in the absence of the disorder. Our results imply that the disorder can tame the collective motion of the coupled chaotic maps.  相似文献   

9.
Using a mixture of analytic and numerical techniques we show that the mode-locked regions of quasi-periodically forced Arnold circle maps form complicated sets in parameter space. These sets are characterized by ‘pinched-off’ regions, where the width of the mode-locked region becomes very small. By considering general quasi-periodically forced circle maps we show that this pinching occurs in a broad class of such maps having a simple symmetry.  相似文献   

10.
The dynamics of one-way coupled systems with discrete time is considered. The behavior of the coupled logistic maps is compared to the dynamics of maps obtained using the Poincaré sectioning procedure applied to the coupled continuous-time systems in the phase synchronization regime. The behavior (previously considered as asynchronous) of the coupled maps that appears when the complete synchronization regime is broken as the coupling parameter decreases, corresponds to the phase synchronization of flow systems, and should be considered as a synchronous regime. A quantitative measure of the degree of synchronism for the interacting systems with discrete time is proposed.  相似文献   

11.
We investigate the motion of the globally coupled maps (logistic map) with a constant force. It is shown that the constant force can cause multi-synchronization for the globally coupled chaotic maps studied by us.  相似文献   

12.
13.
S Puri  E Atlee Jackson 《Pramana》1986,27(6):717-724
We consider a system of two delay diffusively coupled logistic maps. We find that for moderate values of diffusion coupling, the period-doubling sequence is effectively suppressed. Our study supports the existence of certain generic features for systems consisting of two coupled maps.  相似文献   

14.
Systems of strongly coupled chaotic maps generically exhibit collective behavior emerging out of extensive chaos. We show how the well-known renormalization group (RG) of unimodal maps can be extended to the coupled systems, and in particular to coupled map lattices (CMLs) with local diffusive coupling. The RG relation derived for CMLs is nonperturbative, i.e., not restricted to a particular class of configurations nor to some vanishingly small region of parameter space. After defining the strong-coupling limit in which the RG applies to almost all asymptotic solutions, we first present the simple case of coupled tent maps. We then turn to the general case of unimodal maps coupled by diffusive coupling operators satisfying basic properties, extending the formal approach developed by Collet and Eckmann for single maps. We finally discuss and illustrate the general consequences of the RG: CMLs are shown to share universal properties in the space-continuous limit which emerges naturally as the group is iterated. We prove that the scaling properly ties of the local map carry to the coupled systems, with an additional scaling factor of length scales implied by the synchronous updating of these dynamical systems. This explains various scaling laws and self-similar features previously observed numerically.  相似文献   

15.
A simple computationally efficient model which is capable of replicating the basic features of cardiac cell action potential is proposed. The model is a four-dimensional map and demonstrates good correspondence with real cardiac cells. Various regimes of cardiac activity, which can be reproduced by the proposed model, are shown. Bifurcation mechanisms of these regimes transitions are explained using phase space analysis. The dynamics of 1D and 2D lattices of coupled maps which model the behavior of electrically connected cells is discussed in the context of synchronization theory.  相似文献   

16.
We investigate the parametric evolution of riddled basins related to synchronization of chaos in two coupled piecewise-linear Lorenz maps. Riddling means that the basin of the synchronized attractor is shown to be riddled with holes belonging to another basin in an arbitrarily fine scale, which has serious consequences on the predictability of the final state for such a coupled system. We found that there are wide parameter intervals for which two piecewise-linear Lorenz maps exhibit riddled basins (globally or locally), which indicates that there are riddled basins in coupled Lorenz equations, as previously suggested by numerical experiments. The use of piecewise-linear maps makes it possible to prove rigorously the mathematical requirements for the existence of riddled basins.  相似文献   

17.
We propose a simple method to determine the local coupling strength Gamma experimentally, by linking the individual particle dynamics with the local density and crystal structure of a 2D plasma crystal. By measuring particle trajectories with high spatial and temporal resolution we obtain the first maps of Gamma and temperature at individual particle resolution. We employ numerical simulations to test this new method, and discuss the implications to characterize strongly coupled systems.  相似文献   

18.
A large number of logistic maps are coupled together as a mathematical metaphor for complex natural systems with hierarchical organization. The elementary maps are first collected into globally coupled lattices. These lattices are then coupled together in a hierarchical way to form a system with many degrees of freedom. We summarize the behavior of the individual blocks, and then explore the dynamics of the hierarchy. We offer some ideas that guide our understanding of this type of system. (c) 2002 American Institute of Physics.  相似文献   

19.
Zhi Z  Jung Y  Wang RK 《Optics letters》2012,37(5):812-814
This Letter reports the use of an ultrahigh resolution optical microangiography (OMAG) system for simultaneous 3D imaging of microstructure and lymphatic and blood vessels without the use of an exogenous contrast agent. An automatic algorithm is developed to segment the lymphatic vessels from the microstructural images based on the fact that the lymph fluid is optically transparent. An OMAG system is developed that utilizes a broadband supercontinuum light source, providing an axial resolution of 2.3 μm and lateral resolution of 5.8 μm, capable of resolving the capillary vasculature and lymphatic vessels innervating microcirculatory tissue beds. Experimental demonstration is performed by showing detailed 3D lymphatic and blood vessel maps, coupled with morphology, within mouse ears in vivo.  相似文献   

20.
We have investigated the performance of a nano-optical directional coupler based on gap plasmon waveguides. The coupler consists of two waveguides having a localized coupled plasmon propagating between two semi-cylindrical surfaces. After introducing a fundamental mode of studied waveguides, effects of the structure parameters on the coupling length are shown. Simulation results of the coupler obtained by the compact-2D finite-difference time-domain (FDTD) method comply with those derived by an analytic method with the aid of the finite-element frequency-domain (FEFD) software package of COMSOL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号