首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The capability of LA-ICP-MS for determination of trace impurities in transparent quartz glasses was investigated. Due to low or completely lacking absorption of laser radiation, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) proves difficult on transparent solids, and in particular the quantification of measurement results is problematic in these circumstances. Quartz glass reference materials of various compositions were studied by using a Nd:YAG laser system with focused laser radiation of wavelengths of 1064 nm, 532 nm and 266 nm, and an ICP-QMS (Elan 6000, Perkin Elmer). The influence of ICP and laser ablation conditions in the analysis of quartz glasses of different compositions was investigated, with the laser power density in the region of interaction between laser radiation and solid surface determining the ablation process. The trace element concentration was determined via calibration curves recorded with the aid of quartz glass reference materials. Under optimized measuring conditions the correlation coefficients of the calibration curves are in the range of 0.9–1. The relative sensitivity factors of the trace elements determined in the quartz glass matrix are 0.1–10 for most of the trace elements studied by LA-ICP-MS. The detection limits of the trace elements in quartz glass are in the low ng/g to pg/g range.  相似文献   

2.
The capability of LA-ICP-MS for determination of trace impurities in transparent quartz glasses was investigated. Due to low or completely lacking absorption of laser radiation, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) proves difficult on transparent solids, and in particular the quantification of measurement results is problematic in these circumstances. Quartz glass reference materials of various compositions were studied by using a Nd:YAG laser system with focused laser radiation of wavelengths of 1064 nm, 532 nm and 266 nm, and an ICP-QMS (Elan 6000, Perkin Elmer). The influence of ICP and laser ablation conditions in the analysis of quartz glasses of different compositions was investigated, with the laser power density in the region of interaction between laser radiation and solid surface determining the ablation process. The trace element concentration was determined via calibration curves recorded with the aid of quartz glass reference materials. Under optimized measuring conditions the correlation coefficients of the calibration curves are in the range of 0.9-1. The relative sensitivity factors of the trace elements determined in the quartz glass matrix are 0.1-10 for most of the trace elements studied by LA-ICP-MS. The detection limits of the trace elements in quartz glass are in the low ng/g to pg/g range.  相似文献   

3.
The increased interest in laser technology (e.g. for micro-machining, for medical applications, light shows, CD-players) is a tremendous driving force for the development of new laser types and optical set-ups. This directly influences their use in analytical chemistry. For direct analysis of the elemental composition of solids, mostly solid state lasers, such as Nd:YAG laser systems operating at 1064 nm (fundamental wavelength), 266 nm (frequency quadrupled) and even 213 nm (frequency quintupled) have been investigated in combination with all available inductively coupled plasma mass spectrometers. The trend towards shorter wavelengths (1064 nm– 157 nm) was initiated by access to high quality optical materials which led to the incorporation of UV gas lasers, such as excimer lasers (XeCl 308 nm, KrF 248 nm, ArF 193 nm, and F2 157 nm) into laser ablation set-ups. The flexibility in laser wavelengths, output energy, repetition rate, and spatial resolution allows qualitative and quantitative local and bulk elemental analysis as well as the determination of isotope ratios. However, the ablation process and the ablation behavior of various solid samples are different and no laser wavelength was found suitable for all types of solid samples. This article highlights some of the successfully applied systems in LA-ICP-MS. The current fields of applications are explained on selected examples using 266 nm and 193 nm laser ablation systems.  相似文献   

4.
Recent trends and developments in laser ablation-ICP-mass spectrometry   总被引:3,自引:0,他引:3  
The increased interest in laser technology (e.g. for micro-machining, for medical applications, light shows, CD-players) is a tremendous driving force for the development of new laser types and optical set-ups. This directly influences their use in analytical chemistry. For direct analysis of the elemental composition of solids, mostly solid state lasers, such as Nd:YAG laser systems operating at 1064 nm (fundamental wavelength), 266 nm (frequency quadrupled) and even 213 nm (frequency quintupled) have been investigated in combination with all available inductively coupled plasma mass spectrometers. The trend towards shorter wavelengths (1064 nm - 157 nm) was initiated by access to high quality optical materials which led to the incorporation of UV gas lasers, such as excimer lasers (XeCl 308 nm, KrF 248 nm, ArF 193 nm, and F2 157 nm) into laser ablation set-ups. The flexibility in laser wavelengths, output energy, repetition rate, and spatial resolution allows qualitative and quantitative local and bulk elemental analysis as well as the determination of isotope ratios. However, the ablation process and the ablation behavior of various solid samples are different and no laser wavelength was found suitable for all types of solid samples. This article highlights some of the successfully applied systems in LA-ICP-MS. The current fields of applications are explained on selected examples using 266 nm and 193 nm laser ablation systems.  相似文献   

5.
The element ratios in aerosol particles produced by laser ablation (λ=266 nm, pulse length: 5 ns) of brass and steel in Ar and He and deposited in different segments of the transport tube to an ICP have been measured by ICP-MS. The data are compared with the ratios obtained by a corresponding bulk analysis. For brass, the element compositions of the aerosol particles deposited in different parts of the tube deviated from the bulk and varied along the tube. For steel, moderate agreement of the element ratios in the aerosols and the bulk was found. It is also shown that elemental ratios measured on-line by laser ablation ICP-MS with the laser-produced aerosol should not be calibrated by elemental ratios obtained with wet aerosols from aqueous solutions of the bulk.  相似文献   

6.
This paper describes the automated in situ trace element analysis of solid materials by laser ablation (LA) inductively coupled plasma mass spectrometry (ICP-MS). A compact computer-controlled solid state Nd:YAG Merchantek EO UV laser ablation (LA) system has been coupled with the high sensitivity VG PQII S ICP-MS. A two-directional communication was interfaced in-house between the ICP-MS and the LA via serial RS-232 port. Each LA-ICP-MS analysis at a defined point includes a 60 s pre-ablation delay, a 60 s ablation, and a 90 s flush delay. The execution of each defined time setting by LA was corresponding to the ICP-MS data acquisition allowing samples to be run in automated cycle sequences like solution auto-sampler ICP-MS analysis. Each analytical cycle consists of four standards, one control reference material, and 15 samples, and requires about 70 min. Data produced by Time Resolved Analysis (TRA) from ICP-MS were later reduced off-line by in-house written software. Twenty-two trace elements from four reference materials (NIST SRM 613, and fused glass chips of BCR-2, SY-4, and G-2) were determined by the automated LA-ICP-MS method. NIST SRM 610 or NIST SRM 613 was used as an external calibration standard, and Ca as an internal standard to correct for drift, differences in transport efficiency and sampling yield. Except for Zr and Hf in G-2, relative standard deviations for all other elements are less than 10%. Results compare well with the data reported from literature with average limits of detection from 1 ng x g(-1) to 455 ng x g(-1) and less than 100 ng x g(-1) for most trace elements.  相似文献   

7.
Teeth retain different elements at particular stages of life. Hence, the exposure over a selected time span may be characterized by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). A Nd:YAG laser with emission at 266?nm was coupled to a quadrupole ICP-MS for the quantitative study of historical human teeth for Sr and Ba, elements of anthropological significance. A calibration approach incorporating the experimentally derived k coefficient is reported. The coefficients were established based on the mean concentrations of the analytes determined by pneumatic nebulization ICP-MS using acid-digested calcium phosphate standards and the intensities recorded during laser ablation of corresponding standards as pellets. The k values were 0.54?±?0.05 (µg?g?1)?1 and 4.49?±?1.09 (µg?g?1)?1 for Sr and Ba, respectively. This calibration approach provided local quantitative data and demonstrated statistically significant differences in Sr concentrations in enamel and dentine.  相似文献   

8.
Precise and accurate isotope ratio measurements by ICP-MS   总被引:2,自引:0,他引:2  
The precise and accurate determination of isotope ratios by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) is important for quite different application fields (e.g. for isotope ratio measurements of stable isotopes in nature, especially for the investigation of isotope variation in nature or age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, quality assurance of fuel material, for reprocessing plants, nuclear material accounting and radioactive waste control, for tracer experiments using stable isotopes or long-lived radionuclides in biological or medical studies). Thermal ionization mass spectrometry (TIMS), which used to be the dominant analytical technique for precise isotope ratio measurements, is being increasingly replaced for isotope ratio measurements by ICP-MS due to its excellent sensitivity, precision and good accuracy. Instrumental progress in ICP-MS was achieved by the introduction of the collision cell interface in order to dissociate many disturbing argon-based molecular ions, thermalize the ions and neutralize the disturbing argon ions of plasma gas (Ar+). The application of the collision cell in ICP-QMS results in a higher ion transmission, improved sensitivity and better precision of isotope ratio measurements compared to quadrupole ICP-MS without the collision cell [e.g., for 235U/238U approximately 1 (10 microg x L(-1) uranium) 0.07% relative standard deviation (RSD) vs. 0.2% RSD in short-term measurements (n = 5)]. A significant instrumental improvement for ICP-MS is the multicollector device (MC-ICP-MS) in order to obtain a better precision of isotope ratio measurements (with a precision of up to 0.002%, RSD). CE- and HPLC-ICP-MS are used for the separation of isobaric interferences of long-lived radionuclides and stable isotopes by determination of spallation nuclide abundances in an irradiated tantalum target.  相似文献   

9.
A homogenized 193 nm excimer laser with a flat-top beam profile was used to study the capabilities of LA-ICP-MS for ‘quasi’ non-destructive fingerprinting and sourcing of sapphires from different locations. Sapphires contain 97–99% of Al2O3 (corundum), with the remainder composed of several trace elements, which can be used to distinguish the origin of these gemstones. The ablation behavior of sapphires, as well as the minimum quantity of sample removal that is required to determine these trace elements, was investigated. The optimum ablation conditions were a fluency of 6 J cm−2, a crater diameter of 120 μm, and a laser repetition rate of 10 Hz. The optimum time for the ablation was determined to be 2 s, equivalent to 20 laser pulses. The mean sample removal was 60 nm per pulse (approx. 3 ng per pulse). This allowed satisfactory trace element determination, and was found to cause the minimum amount of damage, while allowing for the fingerprinting of sapphires. More than 40 isotopes were measured using different spatial resolutions (20–120 μm) and eight elements were reproducibly detected in 25 sapphire samples from five different locations. The reproducibility of the trace element distribution is limited by the heterogeneity of the sample. The mean of five or more replicate analyses per sample was used. Calibration was carried out using NIST 612 glass reference material as external standard. The linear dynamic range of the ICP-MS (nine orders of magnitude) allowed the use of Al, the major element in sapphire, as an internal standard. The limits of detection for most of the light elements were in the μg g−1 range and were better for heavier elements (mass >85), being in the 0.1 μg g−1 range. The accuracy of the determinations was demonstrated by comparison with XRF analyses of the same set of samples. Using the quantitative analyses obtained using LA-ICP-MS, natural sapphires from five different origins were statistically classified using ternary plots and principal multi-component analysis.  相似文献   

10.
Trace elements in microliter quantities of aqueous solutions were analysed by direct liquid ablation using an 193 nm excimer with an inductively coupled plasma mass spectrometer (ICP-MS). Fractionation resulting from splashing and evaporation can be minimised by covering the liquid surface with a thin plastic film, through which a 20 μm hole is drilled with the laser. Particle-size distribution and oxide formation in the plasma resulting from the direct liquid ablation are similar to those generated by solid ablation. The ICP-MS response in cps/ppm is approximately 100 × higher for the direct ablation, but is proportional to the response from solid ablation, within an accuracy < 15% for most trace elements in NIST 610 and NIST 612 glass standards. A matrix load up to 2.5 wt.-% NaCl in the solution does not affect the proportionality of trace element responses. Thus, direct liquid ablation is not only suited for analysing small volumes of complex aqueous solutions (e.g., the quantitative microanalysis of fluid inclusions in minerals), but also provides a new approach for calibrating laser ablation ICP-MS microanalysis of solids. Received: 2 December 1996 / Revised: 3 March 1997 / Accepted: March 1997  相似文献   

11.
采用自制的大气压下介质阻挡放电装置串联在激光剥蚀池与ICP炬管之间, 对激光剥蚀产生的气溶胶进行预电离. 结果表明, 元素瞬时信号轮廓的平滑度得以改善, 元素分析信号精密度(RSD, n=3)可提高2.55%. 在ArF准分子激光(193 nm)和Nd∶YAG 固体激光(213 nm)两种不同波长的激光剥蚀系统中, 元素分馏因子均比常规模式下更接近于1, 表明采用介质阻挡放电对气溶胶预电离后元素分馏效应得以有效抑制. 相比两种不同波长的激光剥蚀系统, 介质阻挡放电对213 nm固体激光的元素分馏效应改善作用明显.  相似文献   

12.
The use of laser ablation (LA) as a sample-introduction method for inductively coupled plasma mass spectrometry (ICP-MS) creates a powerful tool for trace elemental analysis. With this type of instrument, high analyte spatial resolution is possible in three dimensions with ng/g limits of detection and minimal sample consumption. Here, simultaneous detection is used to eliminate the correlated noise that plagues the ablation process. This benefit allows analyses to be performed with single laser pulses, resulting in improved depth resolution, even less sample consumption, and improved measurement precision. The new instrument includes an LA sample-introduction system coupled to an ICP ionization source and a Mattauch-Herzog mass spectrograph (MHMS) fitted with a novel array detector. With this instrument, absolute limits of detection are in the tens to hundreds of fg regime and isotope-ratio precision is better than 0.02% RSD with a one-hour integration period. Finally, depth-profile analysis has been performed with a depth resolution of 5 nm per ablation event.  相似文献   

13.
Influence of laser wavelength, laser irradiance and the buffer gas pressure were studied in high irradiance laser ablation and ionization source coupled with an orthogonal time-of-flight mass spectrometer. Collisional cooling effects of energetic plasma ions were proved to vary significantly with the elemental mass number. Effective dissociation of interferential polyatomic ions in the ion source, resulting from collision and from high laser irradiance, was verified. Investigation of relative sensitivity coefficients (RSC) of different elements performed on a steel standard GBW01396, which was ablated at 1064 nm, 532 nm, 355 nm, and 266 nm, has demonstrated that the thermal ablation mechanism could play a critical role with the first three wavelengths, while 266 nm induces non-thermal ablation principally. Experimental results also indicated that there is no evident discrepancy for most metal elements on RSCs and LODs among four wavelengths at high irradiance, except that high boiling point elements like Nb, Mo, and W have higher RSCs at higher irradiance regions of 1064 nm, 532 nm, and 355 nm due to thermal ablation. A geological standard and a garnet stone were also used in the experiment subsequently, and their RSCs and LODs for metal elements show nonsignificant dependence on wavelength at designated irradiances. All results reveal that relatively uniform sensitivity can be achieved at any wavelength for metal elements in the solids used in our experiments at an appropriate irradiance for the low pressure high irradiance laser ablation and ionization source.  相似文献   

14.
Ongoing discussions about the origin of elemental fractionation occurring during LA-ICP-MS analysis show that this problem is still far from being well understood. It is becoming accepted that all three possible sources (ablation, transport, excitation) contribute to elemental fractionation. However, experimental data about the vaporisation size limit of different particles in the ICP, as produced in laser ablation, have not been available until now. This information should allow one to determine the signal contributing mass within the ICP and would further clarify demands on suitable laser ablation systems and gas atmospheres in terms of their particle size distribution.The results presented here show a vaporisation size limit of laser induced particles, which was found at particle sizes between 90 nm and 150 nm using an Elan 6000 ICP-MS. Due to the fact that the ICP-MS response was used as evaluation parameter, vaporisation and ionisation limits are not distinguishable.The upper limit was determined by successively removing the larger particles from the aerosol, which was created by ablation of a NIST 610 glass standard at a wavelength of 266 nm, using a recently developed particle separation device. Various particle fractions were separated from the aerosol entering the ICP. The decrease in signal intensity is not proportional to the decrease in volume, indicating that particles above 150 nm in diameter are not completely ionised in the ICP. Due to the limited removal range of the particle separation device, which cannot remove particles smaller than 150 nm, single hole ablations were used to determine the lower vaporisation limit. This is based on measurements showing that larger particles occur dominantly during the first 100 laser pulses only. After this period, the ratio of ICP-MS counts and total particle volume was found to be constant while most of the particles are smaller than 90 nm, indicating complete vaporisation and ionisation of these particles.To describe the influence of different plasma forward powers on the vaporisation limit, the range 1000–1600 W was studied. Results indicate that optimum vaporisation and ionisation occurs at 1300 W. However, an increase of the particle ionisation limit towards larger particles was not observed within the accuracy of this study using the full range of parameters available for optimisation on commonly used ICP-MS instruments.  相似文献   

15.
Bubble cells have been frequently employed in capillary electrophoresis (CE) to increase the light path length with UV detection to provide an increase in the observed sensitivity of CE; however this approach has not been commonly used for laser-induced fluorescence detection (LIF) with CE. In this paper we study the influence of laser power on the sensitivity of detection in using conventional and enlarged fused silica capillaries for CE with LIF. When using the bubble cell capillary, the laser power must be decreased relative to use of the conventional capillary to reduce the effects of photodegradation of the species being illuminated by the laser. Even though the light intensity was decreased, an increase in sensitivity of detection was observed for most compounds when a bubble cell was used. This increase ranged from a factor of 8 for riboflavin (410 nm excitation) to 3.2 for most aromatic compounds (266 nm excitation), when using a 3x bubble cell compared with a conventional capillary. The bubble cell capillary was used for native detection of IgG by LIF at 266 nm. A limit of detection of 60 ng mL(-1) was obtained from a 20 pg injection, which was 40 times more sensitive than silver staining in conventional SDS/PAGE.  相似文献   

16.
Styrene-butadiene copolymers were analyzed by static secondary ion mass spectrometry (S-SIMS) and laser ablation Fourier transform ion cyclotron resonance mass spectrometry (LA-FTICRMS) to obtain quantitative information based on specific ions. Silver deposition was performed on polystyrene, butadiene rubber and styrene-butadiene rubber. Under these experimental conditions, new secondary ions were detected, in particular silver-cationized butadiene [M(butadiene) - Ag](+) and styrene [M(styrene) - Ag](+) monomers. In contrast, LA-FTICRMS experiments did not require pretreatment. At high laser power density, UV photons (193, 266 and 355 nm) allowed the detection of styrene and butadiene monomers at m/z 104 and 54, respectively. The use of the observed ions by SIMS or LA-FTICRMS ensures that quantitative information on the relative distribution of each monomer is obtained. However, the silver coating thickness in the SIMS experiment seems to have an important influence on the quantitative information obtained. For LA-FTICRMS experiments, the best results are obtained at a wavelength of 355 nm.  相似文献   

17.
Determination of phosphorus in small amounts of protein samples by ICP–MS   总被引:3,自引:0,他引:3  
Inductively coupled plasma mass spectrometry (ICP-MS) is used for phosphorus determination in protein samples. A small amount of solid protein sample (down to 1 micro g) or digest (1-10 micro L) protein solution was denatured in nitric acid and hydrogen peroxide by closed-microvessel microwave digestion. Phosphorus determination was performed with an optimized analytical method using a double-focusing sector field inductively coupled plasma mass spectrometer (ICP-SFMS) and quadrupole-based ICP-MS (ICP-QMS). For quality control of phosphorus determination a certified reference material (CRM), single cell proteins (BCR 273) with a high phosphorus content of 26.8+/-0.4 mg g(-1), was analyzed. For studies on phosphorus determination in proteins while reducing the sample amount as low as possible the homogeneity of CRM BCR 273 was investigated. Relative standard deviation and measurement accuracy in ICP-QMS was within 2%, 3.5%, 11% and 12% when using CRM BCR 273 sample weights of 40 mg, 5 mg, 1 mg and 0.3 mg, respectively. The lowest possible sample weight for an accurate phosphorus analysis in protein samples by ICP-MS is discussed. The analytical method developed was applied for the analysis of homogeneous protein samples in very low amounts [1-100 micro g of solid protein sample, e.g. beta-casein or down to 1 micro L of protein or digest in solution (e.g., tau protein)]. A further reduction of the diluted protein solution volume was achieved by the application of flow injection in ICP-SFMS, which is discussed with reference to real protein digests after protein separation using 2D gel electrophoresis.The detection limits for phosphorus in biological samples were determined by ICP-SFMS down to the ng g(-1) level. The present work discusses the figure of merit for the determination of phosphorus in a small amount of protein sample with ICP-SFMS in comparison to ICP-QMS.  相似文献   

18.
Fundamental understanding of aerosol formation and particle transport are important aspects of understanding and improving laser-ablation ICP–MS. To obtain more information about particles entering the ICP, laser aerosols generated under different ablation conditions were collected on membrane filters. The particles and agglomerates were then visualised using scanning electron microscope (SEM) imaging. To determine variations between different sample matrices, opaque (USGS BCR-2G) and transparent (NIST SRM 610) glass, CaF2, and brass (MBH B26) samples were ablated using two different laser wavelengths, 193 and 266 nm. This study showed that the condensed nano-particles (∼10 nm in diameter) formed by laser ablation reach the ICP as micron-sized agglomerates; this is apparent from filters which contain only a few well-separated particles and particle agglomerates. Ablation experiments on different metals and non-metals show that the structure of the agglomerates is matrix-dependent. Laser aerosols generated from silicates and metals form linear agglomerates whereas particle-agglomerates of ablated CaF2 have cotton-like structures. Amongst other conditions, this study shows that the absorption characteristics of the sample and the laser wavelength determine the production of micron-sized spherical particles formed by liquid droplet ejection.  相似文献   

19.
The influence of sample matrix composition, absorption behavior and laser aerosol particle size distribution on elemental fractionation in laser ablation inductively coupled plasma mass spectrometry was studied for nanosecond laser ablation at a wavelength of 266 nm. To this end, lithium tetraborate glass samples with different iron oxide contents and trace amounts of a group of 11 elements were prepared synthetically. The samples were characterized in terms of optical absorbance, melting points, trace element concentrations and homogeneity. UV/VIS spectra showed that sample absorption rises with increasing Fe2O3 content. Crater depths and time-dependent particle size distributions were measured, and ablated and transported sample volumes were estimated. Furthermore, the laser aerosol was filtered using a particle separation device and transient ICP-MS signals were acquired with and without filtering the aerosol. The results demonstrate that the amount of ablated sample is related to the absorption coefficient of the sample and therefore to the optical penetration depth of the laser beam into the sample. The higher energy densities resulting from the shorter penetration depths result in smaller average particle sizes for highly absorbing samples, which allows more efficient transport to and atomization and excitation of the ablated material within the ICP. The particle size distribution changes continuously with ablation time, and larger particle fractions occur mainly at the beginning of the ablation, which leads to particle-related fractionation processes at the beginning of the transient signal. Exceeding a critical depth to diameter ratio, laser-related elemental fractionation processes occur. Changes in the volatile to non-volatile element intensity ratio after the aerosol is filtered indicate that particle size-related enrichment processes contribute to elemental fractionation.  相似文献   

20.
The feasibility of depth profiling of zinc-coated iron sheets by laser ablation (LA) was studied using an Nd:YAG laser (1064 nm) with inductively coupled plasma optical emission spectrometry (ICP-OES), and an excimer ArF* laser (193 nm) with a beam homogenizer. The latter was coupled to an ICP with mass spectrometry (ICP-MS). Fixed-spot ablation was applied. Both LA systems were capable of providing depth profiles that approach the profiles obtained by glow discharge optical emission spectroscopy (GD-OES) and electron probe X-ray microanalysis (EPXMA). For Nd:YAG laser an artefact consisting of zinc depth profile signal tailing appeared, enlarging thus erroneously diffusional coating–substrate interface profile. However, the ArF* system partially reduced but not suppressed that phenomenon. For both LA systems the Fe signal from the substrate increased with depth as expected and reached a plateau. The depth resolution (depth range corresponding to 84%–16% change in the full signal) achieved was several micrometers. Ablation rate was found to depend on ablation spot area at constant irradiance. Consequently, ablated volume per shot dependence on pulse energy exhibits deviation from linear course.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号