首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The usual tools for computing special functions are power series, asymptotic expansions, continued fractions, differential equations, recursions, and so on. Rather seldom are methods based on quadrature of integrals. Selecting suitable integral representations of special functions, using principles from asymptotic analysis, we develop reliable algorithms which are valid for large domains of real or complex parameters. Our present investigations include Airy functions, Bessel functions and parabolic cylinder functions. In the case of Airy functions we have improvements in both accuracy and speed for some parts of Amos's code for Bessel functions.  相似文献   

2.
We give an overview of basic methods that can be used for obtaining asymptotic expansions of integrals: Watson’s lemma, Laplace’s method, the saddle point method, and the method of stationary phase. Certain developments in the field of asymptotic analysis will be compared with De Bruijn’s book Asymptotic Methods in Analysis. The classical methods can be modified for obtaining expansions that hold uniformly with respect to additional parameters. We give an overview of examples in which special functions, such as the complementary error function, Airy functions, and Bessel functions, are used as approximations in uniform asymptotic expansions.  相似文献   

3.
For the confluent hypergeometric functions U (a, b, z) and M (a, b, z) asymptotic expansions are given for a → ∞. The expansions contain modified Bessel functions. For real values of the parameters rigorous error bounds are given.  相似文献   

4.
Gergő Nemes 《Acta Appl Math》2017,150(1):141-177
In this paper, we reconsider the large-argument asymptotic expansions of the Hankel, Bessel and modified Bessel functions and their derivatives. New integral representations for the remainder terms of these asymptotic expansions are found and used to obtain sharp and realistic error bounds. We also give re-expansions for these remainder terms and provide their error estimates. A detailed discussion on the sharpness of our error bounds and their relation to other results in the literature is given. The techniques used in this paper should also generalize to asymptotic expansions which arise from an application of the method of steepest descents.  相似文献   

5.
Second-order linear ordinary differential equations with a large parameter u are examined. Classic asymptotic expansions involving Airy functions are applicable for the case where the argument z lies in complex domain containing a simple turning point. In this article, such asymptotic expansions are converted into convergent series, where u appears in an inverse factorial, rather than an inverse power. The domain of convergence of the new expansions is rigorously established and is found to be an unbounded domain containing the turning point. The theory is then applied to obtain convergent expansions for Bessel functions of complex argument and large positive order.  相似文献   

6.
Asymptotic expansions are given for large values of n of the generalized Bessel polynomials . The analysis is based on integrals that follow from the generating functions of the polynomials. A new simple expansion is given that is valid outside a compact neighborhood of the origin in the z-plane. New forms of expansions in terms of elementary functions valid in sectors not containing the turning points zi/n are derived, and a new expansion in terms of modified Bessel functions is given. Earlier asymptotic expansions of the generalized Bessel polynomials by Wong and Zhang (1997) and Dunster (2001) are discussed.  相似文献   

7.
We consider a charged quantum particle moving in a two-dimensional plane in the three-dimensional coordinate space and scattering on an immovable Coulomb center in the same plane. We derive and investigate expansions of the wave function and of all radial wave functions of the particle in integer powers of the wave number and in Bessel functions of a real order. We prove that finite sums of such expansions are asymptotic in the low-energy limit.  相似文献   

8.
We assume that a charged quantum particle moves in a space of dimension d = 2, 3,... and is scattered by a fixed Coulomb center. We derive and study expansions of the wave function and all radial functions of such a particle in integer powers of the wave number and in Bessel functions of a real order. We prove that finite sums of such expansions are asymptotic approximations of the wave functions in the low-energy limit.  相似文献   

9.
Asymptotic expansions of certain finite and infinite integrals involving products of two Bessel functions of the first kind are obtained by using the generalized hypergeometric and Meijer functions. The Bessel functions involved are of arbitrary (generally different) orders, but of the same argument containing a parameter which tends to infinity. These types of integrals arise in various contexts, including wave scattering and crystallography, and are of general mathematical interest being related to the Riemann—Liouville and Hankel integrals. The results complete the asymptotic expansions derived previously by two different methods — a straightforward approach and the Mellin-transform technique. These asymptotic expansions supply practical algorithms for computing the integrals. The leading terms explicitly provide valuable analytical insight into the high-frequency behavior of the solutions to the wave-scattering problems.  相似文献   

10.
New integral representations, asymptotic formulas, and series expansions in powers of tanh(t/2) are obtained for the imaginary and real parts of the Legendre function P(cosht). Coefficients of these series expansions are orthogonal polynomials in the real variable ξ. A number of relations for these orthogonal polynomials are obtained on the basis of the generating function. Several inversion theorems are proven for the integral transforms involving the Legendre function of imaginary degree. In many cases it is preferable to employ these transforms, than Mehler-Fok transforms, since conditions placed on functions are less restrictive.  相似文献   

11.
A standard method for computing values of Bessel functions has been to use the well-known ascending series for small argument, and to use an asymptotic series for large argument; with the choice of the series changing at some appropriate argument magnitude, depending on the number of digits required. In a recent paper, D. Borwein, J. Borwein, and R. Crandall [D. Borwein, J.M. Borwein, R. Crandall, Effective Laguerre asymptotics, preprint at http://locutus.cs.dal.ca:8088/archive/00000334/] derived a series for an “exp-arc” integral which gave rise to an absolutely convergent series for the J and I Bessel functions with integral order. Such series can be rapidly evaluated via recursion and elementary operations, and provide a viable alternative to the conventional ascending-asymptotic switching. In the present work, we extend the method to deal with Bessel functions of general (non-integral) order, as well as to deal with the Y and K Bessel functions.  相似文献   

12.
The asymptotic behaviour of parabolic cylinder functions of large real order is considered. Various expansions in terms of elementary functions are derived. They hold uniformly for the variable in appropriate parts of the complex plane. Some of the expansions are doubly asymptotic with respect to the order and the complex variable which is an advantage for computational purposes. Error bounds are determined for the truncated versions of the asymptotic series.  相似文献   

13.
We consider polynomials that are orthogonal on [−1,1] with respect to a modified Jacobi weight (1−x)α(1+x)βh(x), with α,β>−1 and h real analytic and strictly positive on [−1,1]. We obtain full asymptotic expansions for the monic and orthonormal polynomials outside the interval [−1,1], for the recurrence coefficients and for the leading coefficients of the orthonormal polynomials. We also deduce asymptotic behavior for the Hankel determinants and for the monic orthogonal polynomials on the interval [−1,1]. For the asymptotic analysis we use the steepest descent technique for Riemann-Hilbert problems developed by Deift and Zhou, and applied to orthogonal polynomials on the real line by Deift, Kriecherbauer, McLaughlin, Venakides, and Zhou. In the steepest descent method we will use the Szeg? function associated with the weight and for the local analysis around the endpoints ±1 we use Bessel functions of appropriate order, whereas Deift et al. use Airy functions.  相似文献   

14.
Second-order linear ordinary differential equations with a large parameter u are examined. Asymptotic expansions involving modified Bessel functions are applicable for the case where the coefficient function of the large parameter has a simple pole. In this paper, we examine such equations in the complex plane, and convert the asymptotic expansions into uniformly convergent series, where u appears in an inverse factorial, rather than an inverse power. Under certain mild conditions, the region of convergence containing the simple pole is unbounded. The theory is applied to obtain exact connection formulas for general solutions of the equation, and also, in a special case, to obtain convergent expansions for associated Legendre functions of complex argument and large degree.  相似文献   

15.
Airy-type asymptotic representations of a class of special functions are considered from a numerical point of view. It is well known that the evaluation of the coefficients of the asymptotic series near the transition point is a difficult problem. We discuss two methods for computing the asymptotic series. One method is based on expanding the coefficients of the asymptotic series in Maclaurin series. In the second method we consider auxiliary functions that can be computed more efficiently than the coefficients in the first method, and we do not need the tabulation of many coefficients. The methods are quite general, but the paper concentrates on Bessel functions, in particular on the differential equation of the Bessel functions, which has a turning point character when order and argument of the Bessel functions are equal.  相似文献   

16.
The authors modify a method of Olde Daalhuis and Temme for representing the remainder and coefficients in Airy-type expansions of integrals. By using a class of rational functions, they express these quantities in terms of Cauchy-type integrals; these expressions are natural generalizations of integral representations of the coefficients and the remainders in the Taylor expansions of analytic functions. By using the new representation, a computable error bound for the remainder in the uniform asymptotic expansion of the modified Bessel function of purely imaginary order is derived.  相似文献   

17.
Expansions in terms of Bessel functions are considered of the Kummer function 1 F 1(a; c, z) (or confluent hypergeometric function) as given by Tricomi and Buchholz. The coefficients of these expansions are polynomials in the parameters of the Kummer function and the asymptotic behavior of these polynomials for large degree is given. Tables are given to show the rate of approximation of the asymptotic estimates. The numerical performance of the expansions is discussed together with the numerical stability of recurrence relations to compute the polynomials. The asymptotic character of the expansions is explained for large values of the parameter a of the Kummer function.  相似文献   

18.
Summary The paper deals with the generalisation of a formula for the Bessel coefficients which has been found byNeumann andLommel.Summation of products of Bessel functions the order of which is given by a linear Diophantine equation is performed with the aid of an integral representation. The obtained integrals can be used for series expansions and axymptotic approximations. The results are applied to the calculation of frequency modulation distortion caused by multipath transmission.  相似文献   

19.
Based on a continuity property of the Hadamard product of power series we derive results concerning the rate of convergence of the partial sums of certain polynomial series expansions for Bessel functions. Since these partial sums are easily computable by recursion and since cancellation problems are considerably reduced compared to the corresponding Taylor sections, the expansions may be attractive for numerical purposes. A similar method yields results on series expansions for confluent hypergeometric functions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Power series expansions for cosecant and related functions together with a vast number of applications stemming from their coefficients are derived here. The coefficients for the cosecant expansion can be evaluated by using: (1) numerous recurrence relations, (2) expressions resulting from the application of the partition method for obtaining a power series expansion and (3) the result given in Theorem 3. Unlike the related Bernoulli numbers, these rational coefficients, which are called the cosecant numbers and are denoted by c k , converge rapidly to zero as k????. It is then shown how recent advances in obtaining meaningful values from divergent series can be modified to determine exact numerical results from the asymptotic series derived from the Laplace transform of the power series expansion for tcsc?(at). Next the power series expansion for secant is derived in terms of related coefficients known as the secant numbers d k . These numbers are related to the Euler numbers and can also be evaluated by numerous recurrence relations, some of which involve the cosecant numbers. The approaches used to obtain the power series expansions for these fundamental trigonometric functions in addition to the methods used to evaluate their coefficients are employed in the derivation of power series expansions for integer powers and arbitrary powers of the trigonometric functions. Recurrence relations are of limited benefit when evaluating the coefficients in the case of arbitrary powers. Consequently, power series expansions for the Legendre-Jacobi elliptic integrals can only be obtained by the partition method for a power series expansion. Since the Bernoulli and Euler numbers give rise to polynomials from exponential generating functions, it is shown that the cosecant and secant numbers gives rise to their own polynomials from trigonometric generating functions. As expected, the new polynomials are related to the Bernoulli and Euler polynomials, but they are found to possess far more interesting properties, primarily due to the convergence of the coefficients. One interesting application of the new polynomials is the re-interpretation of the Euler-Maclaurin summation formula, which yields a new regularisation formula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号